[\frac{1}{x}<2|\cdot x^2\ x<2x^2\ 2x^2-x>0\ x(2x-1)>0\ x\in(-\infty,0)\cup(\frac{1}{2},\infty)
]
To find the other case for the inequality x 1 < 2 , we consider negative values of x . This leads to the conclusion that valid solutions are x < 0 or \frac{1}{2}"> x > 2 1 .
;