G e n er a l f or m u l a f or l in e : y = a x + b P a sses t h ro ug h ( 1 , 1 ) ( − 2 , 4 ) { 4 = − 2 a + b 1 = 1 a + b ∣ ⋅ 2 { 4 = − 2 a + b 2 = 2 a + 2 b + − − − − − 6 = 3 b ∣ : 3 b = 2 1 = a + 2 1 − 2 = a a = − 1 y = − x + 2 P a sses t h ro ug h ( 6 , n ) : = − 6 + 2 n = − 4
To find n, we first calculate the slope of the line passing through (1, 1) and (-2, 4), which is -1. Using the point-slope form, we determine the equation of the line to be y = -x + 2, and substituting x = 6 gives us n = -4.
;