the\ standard\ deviation\ (\sigma)= \sqrt{ \frac{\big{(x_1-\overline{x})^2+(x_2-\overline{x})^2+...+(x_n-\overline{x})^2}}{\big{n}}} \\\\\\and\ \ \ \overline{x}= \frac{\big{x_1+x_2+...+x_n}}{\big{n}} \\\\---------------------\\\\x_1=0.26;\ \ \ x_2=0.23\ \ \ \Rightarrow\ \ \ \overline{x}= \frac{0.26+0.23}{2} =0.245\\\\\\\sigma=\sqrt{ \frac{\big{(0.26-0.245)^2+(0.23-0.245)^2}}{\big{2}}} =\sqrt{ \frac{\big{(0.015)^2+(-0.015)^2}}{\big{2}}} =
=\sqrt{ \frac{ \big{2\cdot (0.015)^2}}{\big{2}}} =\sqrt{ (0.015)^2} =0.015
To find the standard deviation of 0.26 and 0.23, we first calculated the mean, which is 0.245. We then computed the variance as 0.000225 and, finally, the standard deviation, which equals 0.015. This indicates how spread out the values are from the mean.
;
Jawaban:Lima ribu sembilan ribu sembilan puluh lima sembilan sembilan ratus enam?Penjelasan dengan langkah-langkah:jawaban kesatu adalah ribuan kedua puluhan ketiga ratusan.
Jawaban:Lima puluh sembilan juta sembilan ratus lima puluh sembilan ribu sembilan puluh enam rupiah Penjelasan dengan langkah-langkah:nalar dikit bro