\left \{ {\big{x+y=34.5} \atop \big{xy=297}} \right.\\\\ \left \{ {\big{x=34.5-y\ \ \ \ \ } \atop\big {(34.5-y)y=297}} \right.\\\\\\ 34.5y-y^2-297=0\ \ \ \Rightarrow\ \ \ -y^2+34.5y-297=0\ /\cdot 2\\\\-2y^2+69y-594=0\\\\ \ \ \ \Rightarrow\ \ \ \Delta=69^2-4\cdot(-2)\cdot(-594)=4761-4752=9\\\\y_1= \frac{-69-3}{2\cdot(-2)} = \frac{-72}{-4} =18\ \ \ \Rightarrow\ \ \ x_1=34.5-18=16.5\\\\y_2= \frac{-69+3}{2\cdot(-2)} = \frac{-66}{-4} =16.5\ \ \ \Rightarrow\ \ \ x_2=34.5-16.5=18
A n s . tw o n u mb ers a re : 18 an d 16.5
x + y = 34.5 xy = 297 From the first one . . . y = 34.5 - x Plug that into the second one . . . x(34.5 - x) = 297 Eliminate parentheses . . . 34.5x - x² = 297 Bend that around and tidy it up . . . x² - 34.5x + 297 = 0 Apply the quadratic formula to that, and find . . . x =18 x = 16.5
The two real numbers whose sum is 34.5 and product is 297 are 16.5 and 18. These numbers satisfy both conditions given in the problem. Verification shows that their sum and product confirm the original equations.
;
Jawab:A.) 60 hari sekaliB.) 4 MeiPenjelasan dengan langkah-langkah:Faktorisasi prima10 = 2 × 512 = 2² × 3A.) Setiap berapa hari membeli bersamaanKPK= 2² × 3 × 5= 4 × 3 × 5= 60B.) Membeli bersamaan kedua kalinya= 5 Maret + 60 hari= 60 - (31 - 5 + 30)= 60 - 56 = 4 Mei[tex]\boxed{ \red{ \boxed{\pink{\mathcal{M \frak{ ilana} \purple{ \tt01}}}}}} [/tex]