VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In Penjaskes / Sekolah Menengah Atas | 2025-07-03

Permainan bersifat fleksibel

Asked by Minah3744

Answer (3)

6 ) f ( x ) = 2 x 2 − 8 x + p t h e minim u m v a l u e = 20 ⇔ y o f v er t e x ​ = 20 ⇔ − 2 a Δ ​ = 20 Δ = ( − 8 ) 2 − 4 ⋅ 2 ⋅ p = 64 − 8 p ⇔ − 2 ⋅ 2 64 − 8 p ​ = 20 ⇔ − 16 + 2 p = 20 2 p = 36 ⇔ p = 18 ⇒ f ( x ) = 2 x 2 − 8 x + 18 f ( 2 ) = 2 ⋅ 2 2 − 8 ⋅ 2 + 18 = 2 ⋅ 4 − 16 + 18 = 8 + 2 = 10
0\ \ \ \rightarrow\ \ \ the\ shape\ is\ \cup\ )\\\\8)\ \ \ the\ turning\ point=(-15;3)\ \ \ \Rightarrow\ \ \ f(x)=a(x+15)^2+3\\\\ the\ graph\ passes\ through\ the\ point\ (-12.0) \ \Rightarrow\ \ 0=a(-12+15)^2+3\\\\\Rightarrow\ \ \ a\cdot3^2=-3\ \ \ \Rightarrow\ \ \ a=- \frac{3}{9} =- \frac{1}{3} \ \ \ \Rightarrow\ \ \ f(x)=- \frac{1}{3}(x+15)^2+3"> 7 ) t h e s ha p e f a c t or o f t h e q u a d r a t i c e q u a t i o n 4 x 2 − 13 x = − 3 i s a = 4 ( a > 0 → t h e s ha p e i s ∪ ) 8 ) t h e t u r nin g p o in t = ( − 15 ; 3 ) ⇒ f ( x ) = a ( x + 15 ) 2 + 3 t h e g r a p h p a sses t h ro ug h t h e p o in t ( − 12.0 ) ⇒ 0 = a ( − 12 + 15 ) 2 + 3 ⇒ a ⋅ 3 2 = − 3 ⇒ a = − 9 3 ​ = − 3 1 ​ ⇒ f ( x ) = − 3 1 ​ ( x + 15 ) 2 + 3
0\ \ \Leftrightarrow\ \ p^2-40>0\ \ \Leftrightarrow\ \ (p-20)(p+20)>0\\.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Leftrightarrow\ \ \ p\in(-\infty;\ -20)\ \cap\ (20;\ +\infty)\\-------------------------------"> ⇒ f ( x ) = − 3 1 ​ ( x 2 + 30 x + 225 ) + 3 = − 3 1 ​ x 2 − 10 x − 72 9 ) 4 x 2 + p x + 25 = 0 Δ = p 2 − 4 ⋅ 4 ⋅ 25 = p 2 − 400 tw o so l u t i o n s ⇔ Δ > 0 ⇔ p 2 − 40 > 0 ⇔ ( p − 20 ) ( p + 20 ) > 0 . ⇔ p ∈ ( − ∞ ; − 20 ) ∩ ( 20 ; + ∞ ) − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
t h e Vi e t a ′ s f or m u l a s t o t h e q u a d r a t i c e q u a t i o n a x 2 + b x + c = 0 x 1 ​ + x 2 ​ = − a b ​ an d x 1 ​ ⋅ x 2 ​ = a c ​ − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − x 1 ​ + x 2 ​ = − 4 p ​ an d x 1 ​ ⋅ x 2 ​ = 4 25 ​ x 1 2 ​ + x 2 2 ​ = x 1 2 ​ + 2 ⋅ x 1 ​ ⋅ x 2 ​ + x 2 2 ​ − 2 ⋅ x 1 ​ ⋅ x 2 ​ = ( x 1 ​ + x 2 ​ ) 2 − 2 ⋅ x 1 ​ ⋅ x 2 ​ x 1 2 ​ + x 2 2 ​ = ( x 1 ​ + x 2 ​ ) 2 − 2 ⋅ x 1 ​ ⋅ x 2 ​ ⇔ 12.5 = ( − 4 p ​ ) 2 − 2 ⋅ 4 25 ​
12.5 = 16 p 2 ​ + 12.5 ⇔ 16 p 2 ​ = 0 ⇔ p 2 = 0 ⇔ p = 0 10 ) x 2 − 4 x + 3 = 0 an d x 2 + 4 x − 21 = 0 x 2 − 4 x + 3 = x 2 + 4 x − 21 ⇔ − 4 x − 4 x = − 21 − 3 ⇔ − 8 x = − 24 ⇔ x = 3

Answered by kate200468 | 2024-06-10

To find f ( 2 ) , we substitute p = 18 into the function yielding f ( 2 ) = 10 . The shape factor for the quadratic equation is 4, indicating a concave-up parabola. The common root between the two given equations is 3.
;

Answered by kate200468 | 2024-11-20

Jawaban:Penjelasan:The phrase "Permainan bersifat fleksibel" translates to "Games are flexible" or "The game is flexible" in English. In the context of early childhood development, it highlights that play should adapt to the child's needs and abilities, allowing for variations and adjustments during gameplay. This flexibility encourages exploration, creativity, and a positive learning experience. Here's a more detailed explanation:Flexibility in play: means that the rules, structure, or even the activity itself can be modified to suit the child's interests and developmental stage. This adaptability is crucial for fostering a positive and engaging play environment, as it allows children to feel in control and encourages them to experiment and learn at their own pace. Examples of flexible games could include adapting the rules of a familiar game to make it easier or harder, or allowing children to choose different roles or materials during play. In essence, flexible games promote a child-centered approach to play, where the focus is on the child's enjoyment and learning, rather than strict adherence to predefined rules.

Answered by lakshmi12102008 | 2025-07-12