0\\ \sqrt{\Delta}=\sqrt{t^2+4cn}\\ x_1=\frac{-t-\sqrt{t^2+4cn}}{2\cdot(-n)}=\frac{t+\sqrt{t^2+4cn}}{2n}\\ x_2=\frac{-t+\sqrt{t^2+4cn}}{2\cdot(-n)}=\frac{t-\sqrt{t^2+4cn}}{2n}\\"> f ( x ) = − n x 2 + t x + c = 0 Δ = t 2 − 4 ⋅ ( − n ) ⋅ c = t 2 + 4 c n 1. Δ < 0 ⇒ x ∈ ∅ 2. Δ = 0 x = 2 ⋅ ( − n ) − t = 2 n t 3. Δ > 0 Δ = t 2 + 4 c n x 1 = 2 ⋅ ( − n ) − t − t 2 + 4 c n = 2 n t + t 2 + 4 c n x 2 = 2 ⋅ ( − n ) − t + t 2 + 4 c n = 2 n t − t 2 + 4 c n
To solve the equation − n x 2 + t x + c = 0 , use the quadratic formula. The discriminant Δ will determine the number of solutions, resulting in no solutions, one solution, or two solutions based on its value. Solutions can be calculated using specific formulas derived from the discriminant and coefficients of the equation.
;
Jawaban:Vs = 30 voltPenjelasan:Diketahui:Np = 200 lilitanNs = 50 lilitanVp = 120 voltDitanya:Vs....?Jawab:[tex]\frac{Vp}{Vs} =\frac{Np}{Ns}=\frac{Is}{Ip}[/tex][tex]\frac{120}{Vs}=\frac{200}{50}[/tex]200Vs = 120 x 50Vs = [tex]\frac{6000}{200}[/tex]Vs = 30 volt