2(3x-2) \geq22\ \ \ \ /:2\\\\3x-2\geq11\ \ \ /+2\\\\3x\geq13\ \ \ \ /:3\\\\x\geq4\frac{1}{3}\\\\x\in\left<4\frac{1}{3};\ \infty\left)
=================================================================
22\ \ \ \ /:2\\\\3x-2 > 11\ \ \ /+2\\\\3x > 13\ \ \ \ /:3\\\\x > 4\frac{1}{3}\\\\x\in\left(4\frac{1}{3};\ \infty\left)"> 2(3x-2) > 22\ \ \ \ /:2\\\\3x-2 > 11\ \ \ /+2\\\\3x > 13\ \ \ \ /:3\\\\x > 4\frac{1}{3}\\\\x\in\left(4\frac{1}{3};\ \infty\left)
=================================================================
-22\ \ \ \ /:2\\\\3x-2 > -11\ \ \ \ /+2\\\\3x > -9\ \ \ \ /:3\\\\x > -3\\\\x\in(-3;\ \infty)"> 2 ( 3 x − 2 ) > − 22 / : 2 3 x − 2 > − 11 / + 2 3 x > − 9 / : 3 x > − 3 x ∈ ( − 3 ; ∞ )
2(3x - 2) > 22
Expand (eliminate parentheses on) the left side:
6x - 4 > 22
Add 4 to each side:
6x > 26
Divide each side by 6 :
x > 13/3
The solution to the inequality 2 ( 3 x − 2 ) ≥ 22 is x ≥ 4 3 1 . This can also be expressed as x ∈ [ 4 3 1 , ∞ ) .
;
[tex] - 3 \times (90 \div 15) \\ = - 3 \times 6 \\ = - 18[/tex]