VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In Matematika / Sekolah Menengah Atas | 2025-07-03

Hasil dari {2x+3}²dx adalah

Asked by Rezalamin3193

Answer (4)

A pythagoras triplet is a set of three numbers ... not just any three numbers, but a set where the (square of one of them) is the sum of the (squares of the other two).
If they're related in that way, then they can be the lengths of the sides of a right triangle.
If they're not, then they can't.

Answered by AL2006 | 2024-06-10

The Pythagorean triplets are sets of three positive integers that satisfy the Pythagorean theorem. According to the Pythagorean theorem, in a right-angled triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the other two sides. So, in a Pythagorean triplet, if 'a', 'b', and 'c' are the lengths of the sides of a right-angled triangle, then 'a^2 + b^2 = c^2'.
For example, one Pythagorean triplet is (3, 4, 5) because 3^2 + 4^2 = 5^2. Another Pythagorean triplet is (5, 12, 13) because 5^2 + 12^2 = 13^2. There are infinitely many Pythagorean triplets, and they can be generated using various techniques.

Answered by Qwpanda | 2024-06-24

Pythagorean triplets are sets of three positive integers that satisfy the equation a 2 + b 2 = c 2 , where c is the hypotenuse of a right triangle. Common examples include (3, 4, 5) and (5, 12, 13). They can be generated using the formula ( m 2 − n 2 , 2 mn , m 2 + n 2 ) for positive integers m and n.
;

Answered by AL2006 | 2024-11-04

•°• Hasil dari [tex]\sf{\int(2x + 3)²~dx}[/tex] adalah [tex]\underline{\boxed{\red{\sf{\dfrac{4}{3}x³ + 3x² + 9x + C}}}}[/tex].[tex] \\ \\ [/tex]Penjelasan dengan langkah-langkah:[tex]\sf{\int(2x + 3)²~dx}[/tex]= [tex]\sf{\int(2x + 3)(2x + 3)~dx}[/tex]= [tex]\sf{\int(4x² + 6x + 6x + 9~dx}[/tex]= [tex]\sf{\int(4x² + 12x + 6x + 9~ dx}[/tex]= [tex]\sf{\dfrac{4}{2 + 1}x^{(2 + 1)} + \dfrac{6}{1 + 1}x^{(1 + 1)} + 9x + C}[/tex]= [tex]\sf{\dfrac{4}{3}x³ + \dfrac{6}{2}x² + 9x + C}[/tex]= [tex]\underline{\boxed{\red{\sf{\dfrac{4}{3}x³ + 3x² + 9x + C}}}}[/tex][tex]~[/tex][tex]__________________________________________________________________________________________[/tex][tex] \\ \\ [/tex] [tex]\blue{\boxed{\colorbox{skyblue}{\rm{- AvR}}}}[/tex]

Answered by JcyntAvrWiguna | 2025-07-04