f ( x ) = 4 x − 3 an d D f = R y = 4 x − 3 ⇒ y + 3 = 4 x / : 4 ⇒ 4 1 y + 4 3 = x f − 1 ( x ) = 4 1 x + 4 3 an d D f − 1 = R ( f − 1 ∘ f ) ( 10 ) = f − 1 ( f ( 10 ) ) = = f − 1 ( 4 ⋅ 10 − 3 ) = f − 1 ( 37 ) = 4 1 ⋅ 37 + 4 3 = 4 37 + 4 3 = 4 40 = 10
f ( x ) = 4 x − 3 y = 4 x − 3 4 x = y + 3 x = 4 1 y + 4 3 f − 1 ( x ) = 4 1 x + 4 3 f − 1 ∘ f = 4 1 ( 4 x − 3 ) + 4 3 f − 1 ∘ f = 4 4 x − 4 3 + 4 3 f − 1 ∘ f = x
The calculation shows that ( f − 1 ∘ f ) ( 10 ) = 10 . This means that applying the function f and then its inverse f − 1 returns the original input. Thus, the result is as expected, confirming the relationship between functions and their inverses.
;
Jawaban:32 kursiPenjelasan dengan langkah-langkah:= (100% - 60%) × 80= 40% × 80[tex] \tt = \frac{40}{100} \times 80[/tex][tex] \tt = \frac{3.200}{100} [/tex]= 32 kursi[tex]\boxed{ \red{ \boxed{\pink{\mathcal{M \frak{ ilana} \purple{ \tt01}}}}}} [/tex]
DiketahuiMemiliki 80 kursiDitanyaJumlah kursi yang kosong jika terisi 60%Dijawab[tex] = 60\% \times 80 \\ = \frac{60}{100} \times 80 \\ \\ = \frac{4800}{100} = 48[/tex]Kursi kosong= 80 - 48= 32KesimpulanMaka jawabannya 32 kursi.