0\Rightarrow x\neq0\\\\log_8(2\cdot4x^2)=log_88^1\\\\log_88x^2=log_88\iff8x^2=8\ \ \ |both\ sides\ /:8\\\\x^2=1\iff x=-1\ or\ x=1.\\\\Solutions:x=-1\ \vee\ x=1."> l o g 8 2 + l o g 8 4 x 2 = 1 ; D : x 2 > 0 ⇒ x = 0 l o g 8 ( 2 ⋅ 4 x 2 ) = l o g 8 8 1 l o g 8 8 x 2 = l o g 8 8 ⟺ 8 x 2 = 8 ∣ b o t h s i d es / : 8 x 2 = 1 ⟺ x = − 1 or x = 1. S o l u t i o n s : x = − 1 ∨ x = 1.
0\\ D:x\in\mathbb{R}\\ \log_88x^2=1\\ 8^1=8x^2\\ x^2=1\\ x=-1 \vee x=1\\"> lo g 8 2 + lo g 8 4 x 2 = 1 D : 4 x 2 > 0 D : x ∈ R lo g 8 8 x 2 = 1 8 1 = 8 x 2 x 2 = 1 x = − 1 ∨ x = 1
The logarithmic equation l o g 8 ( 2 ) + l o g 8 ( 4 x 2 ) = 1 simplifies to x = 1 or x = − 1 , both of which are valid solutions. We combined the logarithmic terms and solved the resulting equation step-by-step. Finally, both solutions meet the condition that 0"> x 2 > 0 .
;
Penjelasan:CLEAR (clean area). jkkkkhhuiyrf