\left \{ {\big{x+y=60} \atop \big{x-y=12}} \right. \\--------\\x+x=60+12\\2x=72\ /:2\\x=36\\\\x+y=60\ \ \ \Rightarrow\ \ \ y=60-x\ \ \ \Rightarrow\ \ \ y=60-36=24\\\\Ans.\ the\ numbers:\ 36\ \ and\ \ 24
The two whole numbers whose sum is 60 and whose difference is 12 are 36 and 24. These values satisfy both conditions given in the problem statement. Thus, they are the correct numbers sought in the question.
;
Jawaban:x = ½ atau x = -2Penjelasan dengan langkah-langkah:2x² + 3x - 2 = 0Nilai x[tex] \sf = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} [/tex][tex] \sf = \frac{ - 3 \pm \sqrt{ {3}^{2} - 4(2)( - 2) } }{2(2)} [/tex][tex] \sf = \frac{ - 3 \pm \sqrt{9 + 16} }{4} [/tex][tex] \sf = \frac{ - 3 \pm \sqrt{25} }{4} [/tex][tex] \sf = \frac{ - 3 \pm5}{4} [/tex][tex] \sf x_{1} = \frac{2}{4} = \frac{1}{2} [/tex][tex] \sf x_{2} = \frac{ - 8}{4} = - 2[/tex][tex]\boxed{ \red{ \boxed{\pink{\mathcal{M \frak{ ilana} \purple{ \tt01}}}}}} [/tex]