VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In SBMPTN / Sekolah Menengah Atas | 2025-07-07

Diketahui bahwa dari calon mahasiswa yang mengikuti ujian masuk Fakultas Kedokteran sebuah universitas pada tahun 2016 sebanyak 20% lulus ujian. Dari 4 calon mahasiswa yang ikut ujian dipilih secara random, berapa peluang 2 calon mahasiswa lulus ujian? [tex]A. \: \frac{16}{625} [/tex] [tex]B. \: \frac{64}{625} [/tex] [tex]C. \: \frac{236}{625} [/tex] [tex]D. \: \frac{256}{625} [/tex] [tex]E. \: \frac{384}{625} [/tex]

Asked by Zalfaa6895

Answer (3)

( 16 5 ​ + 8 7 ​ ) : 2 = ( 16 5 ​ + 16 14 ​ ) : 1 2 ​ = 16 5 + 14 ​ ⋅ 2 1 ​ = 16 19 ​ ⋅ 2 1 ​ = 32 19 ​

Answered by Anonymous | 2024-06-10

The rational number halfway between 16 5 ​ and 8 7 ​ is 32 19 ​ . To find this, convert both fractions to have a common denominator and calculate the average of the two. Following the steps confirms that 32 19 ​ is the correct answer.
;

Answered by Anonymous | 2024-12-24

Peluang seorang calon mahasiswa lulus ujian adalah 20% atau 0,2. Peluang seorang calon mahasiswa tidak lulus adalah 1 - 0,2 = 0,8. 2. Menggunakan Distribusi Binomial: Kita akan menggunakan distribusi binomial karena kita memiliki sejumlah percobaan (4 calon mahasiswa) yang independen, dengan dua kemungkinan hasil (lulus atau tidak lulus) untuk setiap percobaan. Rumus distribusi binomial adalah: P(X=k) = (n k) * p^k * (1-p)^(n-k) di mana: - n = jumlah percobaan (4 calon mahasiswa)- k = jumlah sukses (2 calon mahasiswa lulus)- p = peluang sukses (0,2) 3. Menghitung Peluang: Kita ingin menghitung peluang tepat 2 dari 4 calon mahasiswa lulus: P(X=2) = (4 2) * (0,2)^2 * (0,8)^2 P(X=2) = 6 * (0,04) * (0,64) P(X=2) = 0,15364.Mengubah ke Pecahan:0,1536 = 1536/10000 = 96/625

Answered by fawwaz4669 | 2025-07-08