s in 3 x = 3 s in x − 4 s i n 3 x L = s in ( 2 x + x ) = s in 2 x cos x + s in x cos 2 x = 2 s in x cos x cos x + s in x ( co s 2 x − s i n 2 x ) = 2 s in x co s 2 x + s in x co s 2 x − s i n 3 x = 3 s in x co s 2 x − s i n 3 x = 3 s in x ( 1 − s i n 2 x ) − s i n 3 x = 3 s in x − 3 s i n 3 x − s i n 3 x = 3 s in x − 4 s i n 3 x = R
The identity sin ( 3 x ) = 3 sin x − 4 sin 3 x can be derived using the angle addition formula for sine. By substituting the double angle formulas and simplifying, we arrive at the desired identity. This process involves careful algebraic manipulation and recognizes the relationships between sine and cosine functions.
;
Jawaban:Hasil dari [tex]\tt{}12.84\% \times 25[/tex] adalah [tex]\tt{}3.21[/tex]Penjelasan dengan langkah-langkah:[tex]\tt{}12.84\% \times 25[/tex][tex]\tt{} \frac{12.84}{100} \times 25[/tex][tex]\tt{}0.1284 \times 25[/tex][tex]\tt{}3.21[/tex]