y=6x (1) y=5x-7 (2)
Substitute y into (2) (6x)=5x-7 -- subtract 5x from both sides x=-7
Sub x into 1 y=6(-7) y=-42 **
x=-7 ** y=-42
The system of **equations **are solved and the value of x and y are 7 and 42 respectively
What is an Equation?
**Equations **are statements in mathematics that have two algebraic expressions on either side of the equals (=) sign.
It demonstrates that the expressions on the left and right sides are connected in the same way.
An **equation **has components like as coefficients, variables, operators, constants, terms, expressions, and the equal to sign. The "=" sign and terms on both sides are required when generating an equation.
Given data ,
Let the **equation **be represented as A
Now , the value of A is
y = 6x be **equation **(1)
y = 5x + 7 be **equation **(2)
6x = 5x + 7
On simplifying the **equation **, we get
Subtracting 5x on both sides of the equation , we get
x = 7
So , the value of y is
y = 6 ( 7 )
y = 42
Therefore , the value of x and y are 7 and 42 respectively
Hence , the **equations **are solved
To learn more about **equations **click :
https://brainly.com/question/19297665
#SPJ2
The solution to the system of equations is x = 7 and Y = 42 . By substituting x = 7 back into either original equation, we can verify the solution. This method illustrates how substitution helps in solving systems of equations effectively.
;
Kamu belum menyertakan pembacaan skala jangka sorong-nya (skala utama dan skala nonius). Untuk bisa menghitung hasil pengukurannya secara akurat—khususnya pada alat dengan ketelitian 0,01 cm—aku butuh informasi berikut: 1. Nilai yang diberikan oleh skala utama (misalnya 2,3 cm). 2. Garis ke‑berapa pada skala nonius yang sejajar dengan skala utama (contoh: garis ke‑5, ke‑7, dsb.).⸻ Rumus Penghitungan:\text{Hasil Ukur} = \text{Skala Utama} + (\text{Skala Nonius} \times 0{,}01\,\text{cm})Contoh dari sumber terpercaya: • Jika skala utama = 2,3 cm dan garis nonius sejajar pada posisi ke‑2 →2,3 + (2 × 0,01) = 2,32\,\text{cm}   • Jika skala utama = 0,5 cm dan nonius ke‑10 →0,5 + (10 × 0,01) = 0,60\,\text{cm}