VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In Fisika / Sekolah Menengah Atas | 2025-07-12

Minta tolong yang tau jawabanya

Asked by Jogetsenggel

Answer (3)

So we know the equation Circumference of a circle = πD So now we sub in 50*12π to find the length of the perimeter in inches. This answer is 1884.95559215 No we divide this by 9 to get 209.439510239 Then we round this to the nearest brick to get 209 bricks

Answered by AndyBryer | 2024-06-10

To trim the circular pool, we first calculate the circumference, which is approximately 1884.96 inches. Dividing this by the length of each 9-inch brick gives us about 209 bricks needed for the job. Therefore, around 209 bricks are required to complete the task.
;

Answered by AndyBryer | 2024-12-26

Jawaban:Penjelasan:1.Diketahui:[tex]x=6\text{cm}\\h=20\text{cm}\\h'=23\text{cm}\\n=1,5\\n'=1,62\\[/tex]Ditanyakan:[tex]\phi,d,d',\Delta=?[/tex]Alternatif penyelesaian:[tex]n=\frac{c}{v}\Leftrightarrow v=nc\\n'=\frac{c}{v'}\Leftrightarrow v'=n'c\\\frac{v}{v'} =\frac{n}{n'}=\frac{\sin\phi}{\sin\phi'}[/tex][tex]d'=\sqrt{x^2+h'^2} \\d'=\sqrt{(6\text {cm})^2+(23\text {cm})^2}\\d'=\sqrt{36\text {cm}^2+529\text {cm}^2}\\d'=\sqrt{565\text {cm}^2}\\d'=23,77\text {cm}[/tex][tex]\frac{n}{n'} =\frac{\sin\phi}{\sin\phi '} \\\sin\phi=\frac{n\sin\phi'}{n'} \\\sin\phi=\frac{nx}{n'd'} \\\sin\phi=\frac{(1,5)(6\text{cm})}{(1,62\text{cm})(23,77)} \\\sin\phi=0,2337\\\phi=13,52^{\circ}[/tex][tex]\cos\phi=1-\sin^2\phi\\\cos\phi=1-0,2337^2\\\cos\phi=0,9453[/tex][tex]h=d'\sin \phi\\d'=\frac{h}{\cos\phi} \\d'=\frac{20\text{cm}}{0,9453}\\d'=21,16\text{cm}[/tex][tex]\Delta=p-x\\\Delta=d\sin \phi\\\Delta=21,16\text{cm}(0,2337)\\\Delta=5,05\text {cm}[/tex]Karena jawaban tiap soal panjang sedangkan jumlah karakter untuk menjawab dibatasi silakan dibuat satu pertanyaan satu nomor.

Answered by mastreeada | 2025-07-13