So we know the equation Circumference of a circle = πD So now we sub in 50*12π to find the length of the perimeter in inches. This answer is 1884.95559215 No we divide this by 9 to get 209.439510239 Then we round this to the nearest brick to get 209 bricks
To trim the circular pool, we first calculate the circumference, which is approximately 1884.96 inches. Dividing this by the length of each 9-inch brick gives us about 209 bricks needed for the job. Therefore, around 209 bricks are required to complete the task.
;
Jawaban:Penjelasan:1.Diketahui:[tex]x=6\text{cm}\\h=20\text{cm}\\h'=23\text{cm}\\n=1,5\\n'=1,62\\[/tex]Ditanyakan:[tex]\phi,d,d',\Delta=?[/tex]Alternatif penyelesaian:[tex]n=\frac{c}{v}\Leftrightarrow v=nc\\n'=\frac{c}{v'}\Leftrightarrow v'=n'c\\\frac{v}{v'} =\frac{n}{n'}=\frac{\sin\phi}{\sin\phi'}[/tex][tex]d'=\sqrt{x^2+h'^2} \\d'=\sqrt{(6\text {cm})^2+(23\text {cm})^2}\\d'=\sqrt{36\text {cm}^2+529\text {cm}^2}\\d'=\sqrt{565\text {cm}^2}\\d'=23,77\text {cm}[/tex][tex]\frac{n}{n'} =\frac{\sin\phi}{\sin\phi '} \\\sin\phi=\frac{n\sin\phi'}{n'} \\\sin\phi=\frac{nx}{n'd'} \\\sin\phi=\frac{(1,5)(6\text{cm})}{(1,62\text{cm})(23,77)} \\\sin\phi=0,2337\\\phi=13,52^{\circ}[/tex][tex]\cos\phi=1-\sin^2\phi\\\cos\phi=1-0,2337^2\\\cos\phi=0,9453[/tex][tex]h=d'\sin \phi\\d'=\frac{h}{\cos\phi} \\d'=\frac{20\text{cm}}{0,9453}\\d'=21,16\text{cm}[/tex][tex]\Delta=p-x\\\Delta=d\sin \phi\\\Delta=21,16\text{cm}(0,2337)\\\Delta=5,05\text {cm}[/tex]Karena jawaban tiap soal panjang sedangkan jumlah karakter untuk menjawab dibatasi silakan dibuat satu pertanyaan satu nomor.