A: y=115+4(n/15) where n is the number of customers. y=115+4n/15
B: An increase in the y intercept would mean the base number of pizzas they sold would be higher. The gradient would remain the same.
C: Say they sold an additional 4 for every 4 customers instead. y=115+4(n/4) y=115+4n/4 The gradient in this case would be 1. I.e. the gradient would be different however the intercept would be the same as they are still selling the same number of pizzas.
The **equations **for the additional **pizzas **are solved
What is an Equation?
**Equations **are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation . The "=" sign and terms on both sides must always be present when writing an equation.
Given data ,
Let the **equation **be represented as A
Now , the value of A is
Substituting the values in the equation , we get
x be the number of customers who eat in the restaurant
y be the total number of **pizzas **sold
a be the number of pizzas sold for delivery (given as 115)
The equation to represent the situation is:
y = a + b(x/15)
where b is the number of additional pizzas sold for every 15 customers who eat in the restaurant.
This **equation **states that the total number of **pizzas **sold (y) is equal to the number of pizzas sold for delivery (a), plus the number of additional pizzas sold (b) for every 15 customers who eat in the restaurant (x/15).
b)
An increase in the y-intercept would represent an increase in the number of **pizzas **sold for delivery (a). This could happen, for example, if the restaurant increased its marketing efforts to promote delivery orders or lowered the delivery fee to encourage more customers to order for delivery.
c)
Let's assume that the eat-in only restaurant sells **pizzas **at a lower proportion of customers to pizzas sold, with a proportion of 1 pizza sold for every 10 customers who eat in the restaurant. Let:
x be the number of customers who eat in the restaurant
y be the total number of pizzas sold
c be the number of pizzas sold for delivery (still given as 115)
The equation for this situation would be:
y = c + d(x/10)
where d is the number of additional **pizzas **sold for every 10 customers who eat in the restaurant.
This **equation **has a different slope than the previous equation because the proportion of customers to pizzas sold is different. The y-intercept, however, remains the same (c = 115) because it represents the number of pizzas sold for delivery, which is assumed to be the same for both situations.
Hence , the **equations **are solved
To learn more about **equations **click :
https://brainly.com/question/19297665
#SPJ3
The equation representing the pizza sales is y = 115 + 15 4 x , with y as total pizzas sold and x as eat-in customers. An increase in the y-intercept signifies increased delivery sales. The second equation for an eat-in restaurant might be y = 115 + 10 1 x , which has the same intercept but a different slope.
;
Jawaban:Contoh Klasifikasi Sistem Artifisial dalam Biologi (Taksonomi)Dalam sejarah biologi, banyak sistem klasifikasi awal bersifat artifisial:Klasifikasi Organisme oleh Aristoteles:Berdasarkan Habitat: Aristoteles mengelompokkan hewan menjadi penghuni darat, air, dan udara. Meskipun ini membantu identifikasi cepat, ia mengabaikan perbedaan biologis yang mendalam (misalnya, lumba-lumba, ikan, dan rumput laut dikelompokkan bersama karena hidup di air).Berdasarkan Kehadiran/Tidak Adanya RBCs (Sel Darah Merah): Dia membagi hewan menjadi enaima (dengan RBCs, vertebrata) dan anaima (tanpa RBCs, invertebrata).Klasifikasi Tumbuhan oleh Aristoteles: Ia mengklasifikasikan tumbuhan berdasarkan karakteristik morfologi sederhana seperti tinggi dan ketebalan batang menjadi herba, semak (shrubs), dan pohon (trees). Ini adalah klasifikasi yang sangat praktis dan mudah diamati.Sistem Klasifikasi Linnaeus (Sistem Seksual):Carolus Linnaeus mengklasifikasikan 7.300 tumbuhan berbunga ke dalam 24 kelas, sebagian besar berdasarkan jumlah dan susunan organ reproduksi (benang sari dan putik). Meskipun revolusioner pada masanya karena kemudahannya, sistem ini dianggap artifisial karena mengelompokkan tumbuhan yang sebenarnya tidak berkerabat dekat hanya karena memiliki jumlah benang sari yang sama. Misalnya, tumbuhan yang berkerabat jauh bisa berada dalam satu kelompok jika kebetulan memiliki jumlah benang sari yang sama.Klasifikasi Tumbuhan Obat: Mengelompokkan tumbuhan berdasarkan khasiat obat atau kegunaannya. Ini sangat praktis untuk farmakologi dan pengobatan herbal, tetapi tidak mencerminkan hubungan evolusioner.Klasifikasi Tanaman Berdasarkan Bentuk Daun atau Warna Bunga: Contoh sederhana di mana tanaman dapat dikelompokkan hanya berdasarkan bentuk daun (misalnya, oval atau lanset) dan warna bunga (merah atau kuning).