There are no whole-number solutions. Assuming you are trying to factorise the quadratic expression x^2 - 18x + 75, the discriminant (b^2 - 4ac) is 324 - 300 = 24. Although it is positive, so there are two solutions, 24 is not a square number so it does not factorise cleanly.
To find the roots of the equation, I would complete the square:
(x - 9)^2 - 81 + 75 = 0 (x - 9)^2 - 6 = 0 (x - 9)^2 = 6 x - 9 = ± √6 x = 9 ±√6 x = (9 + √6) or (9 - √6)
The two numbers that add to -18 and multiply to 75 are not whole numbers; they are − 9 + 6 and − 9 − 6 . Since the discriminant is positive but not a perfect square, the solutions are real but irrational. Therefore, no whole number solutions exist for this problem.
;
1. Dengan menggunakan garis bilangan, hitunglah nilainya:a. 8 + (-7):Mulai dari 8, kemudian hitung 7 langkah ke kiri karena kita menambahkan angka negatif (-7).Hasil: 8 -> 7 -> 6 -> 5 -> 4 -> 3 -> 2 -> 1Jadi, 8 + (-7) = 1.b. 6 + (-9):Mulai dari 6, kemudian hitung 9 langkah ke kiri karena kita menambahkan angka negatif (-9).Hasil: 6 -> 5 -> 4 -> 3 -> 2 -> 1 -> 0 -> -1 -> -2Jadi, 6 + (-9) = -3.c. (-6) + 2:Mulai dari -6, kemudian hitung 2 langkah ke kanan karena kita menambahkan angka positif (2).Hasil: -6 -> -5 -> -4Jadi, (-6) + 2 = -4.d. (-4) + (-5):Mulai dari -4, kemudian hitung 5 langkah ke kiri karena kita menambahkan angka negatif (-5).Hasil: -4 -> -5 -> -6 -> -7 -> -8 -> -9Jadi, (-4) + (-5) = -9.e. (-6) + 9:Mulai dari -6, kemudian hitung 9 langkah ke kanan karena kita menambahkan angka positif (9).Hasil: -6 -> -5 -> -4 -> -3 -> -2 -> -1 -> 0 -> 1 -> 2Jadi, (-6) + 9 = 3.f. (-5) + (-3):Mulai dari -5, kemudian hitung 3 langkah ke kiri karena kita menambahkan angka negatif (-3).Hasil: -5 -> -6 -> -7 -> -8Jadi, (-5) + (-3) = -8.