Since the variation is direct, then we have an equation of the form: y = k x 2 From here, we must find the value of k. For this, we use the following data: y = 245 when x = 7 Substituting values we have: 245 = k 7 2 Rewriting we have: 245 = 49 k Clearing k we have: k = 49 245 k = 5 Therefore, the equation is given by: y = 5 x 2 Evaluating the equation for x = 9 we have: [y = 5 (9) ^ 2
y = 5 (81)
y = 405] **Answer ****The value of y when x = 9 is: ** y = 405
To find the value of y when x = 9 in a direct variation equation where y varies directly as the square of x, we need to find the constant of variation , k. By substituting the given values of x and y into the equation, we can solve for k. With the value of k, we can then substitute x = 9 to find the value of y. ;
When x = 9 , the value of y is 405 based on the direct variation relationship with the square of x . We determined the constant k as 5 and used it to form the equation y = 5 x 2 . Plugging in the value for x gives the final result.
;
Jawaban:1. Fisika – Mempelajari materi, energi, dan hukum-hukum alam semesta.2. Kimia – Mempelajari zat, reaksi kimia, dan perubahan materi.3. Biologi – Mempelajari makhluk hidup dan proses kehidupannya.4. Astronomi – Mempelajari benda-benda langit dan alam semesta.5. Geologi – Mempelajari bumi, struktur, dan proses geologis.6. Ekologi – Mempelajari hubungan antara makhluk hidup dan lingkungannya.