\boxed{x=4a} \\\\ 2)x+a=0 \ => \boxed{x=a}"> x 2 − 3 a x − 4 a 2 = 0 a = 1 b = − 3 c = − 4 Δ = ( − 3 ) 2 − 1 ∗ ( − 4 ) ∗ ( − 4 ) = 9 + 16 → 25 x 1 ; x 2 = 2 − ( − 3 ) + / − 25 = 2 3 + / − 5 x 1 = 2 3 + 5 = 2 8 → 4 x 2 = 2 3 − 5 = 2 − 2 → − 1 x 2 − 3 a x − 4 a 2 = 0 ( x − 4 a ) ( x − ( − 1 ) ∗ a ) = 0 1 ) x − 4 a = 0 => x = 4 a 2 ) x + a = 0 => x = a
x 2 − 3 a x − 4 a 2 = 0 x 2 + a x − 4 a x − 4 a 2 = 0 x ( x + a ) − 4 a ( x + a ) = 0 ( x − 4 a ) ( x + a ) = 0 x = 4 a ∨ x = − a
The solutions to the equation x 2 − 3 a x − 4 a 2 = 0 are found using the quadratic formula, resulting in x = 4 a and x = − a . The discriminant is calculated to be 25 a 2 which helps in finding the roots. Therefore, the final answers in terms of a are these two solutions.
;
soal : menu all Borders digunakan pada Microsoft Excel untukJawaban:Menulis Garis tepi
Jawaban:Menulis Garis tepimenu all Borders digunakan pada Microsoft Excel untuk