A quarter is .25 cents A dime is .10cents A nickel is .5cents A penny is .01cent 3 quarters and 2 pennies=.77cents. 2 dimes and 1 nickel=.25cents The answer is that her mom gave .77 cents on Monday and .25cents on Tuesday If you were to add them together(.77+.25) it would be $1.02
So Monday, she recieved 3 quarters and 2 pennies. We know that each quarter is equal to 25 cents, so if we have 3*25 cents, that makes 75 cents. Each penny equals 1 cent, so 2 pennies makes 2 cents. We add 2 cents to 75 cents to get 77 cents on Monday. Tuesday she got 2 dimes and 1 nickel. We know that each dime is equal to 10 cents, so 2 dimes * 10 cents equals 20 cents. Nickels are worth 5 cents. 1 nickel is equal to 5 cents. We add 5 cents to 20 cents to get 25 cents on Tuesday. In total, she received 1 dollar and 2 cents.
Marie has a weekly budget of $24 to spend on magazines and pies. The equation to represent her spending is mx + py = 24, where m is the cost of magazines and p is the cost of pies. By knowing the prices of each, we can find different combinations of how many she can buy without exceeding her budget.
;
Jawaban: tentukan himpunan penyelesaian dari persamaan linear dua variabel 3x + 2y = 12, dengan x dan y adalah bilangan genap {2, 4, 6, 8}. Persamaan: 3x + 2y = 12 Langkah-langkah: Kita akan mencoba setiap kombinasi nilai x dan y dari himpunan {2, 4, 6, 8} untuk melihat mana yang memenuhi persamaan. 1. Jika x = 2:- 3(2) + 2y = 12- 6 + 2y = 12- 2y = 6- y = 3 (bukan bilangan genap, jadi tidak memenuhi)2. Jika x = 4:- 3(4) + 2y = 12- 12 + 2y = 12- 2y = 0- y = 0 (bukan bilangan genap dalam himpunan yang diberikan, jadi tidak memenuhi)3. Jika x = 6:- 3(6) + 2y = 12- 18 + 2y = 12- 2y = -6- y = -3 (bukan bilangan genap, jadi tidak memenuhi)4. Jika x = 8:- 3(8) + 2y = 12- 24 + 2y = 12- 2y = -12- y = -6 (bukan bilangan genap dalam himpunan yang diberikan, jadi tidak memenuhi) Karena tidak ada nilai x dan y dari himpunan {2, 4, 6, 8} yang memenuhi persamaan 3x + 2y = 12, maka: Himpunan Penyelesaian: Tidak ada himpunan penyelesaian dalam batasan bilangan genap {2, 4, 6, 8}. Catatan: Jika kita tidak membatasi nilai x dan y pada himpunan {2, 4, 6, 8}, maka ada banyak solusi lain yang mungkin. Misalnya, jika x = 0, maka y = 6.