Jawaban:Penjelasan:Diketahui:[tex]\overline E=6\text{km}\angle 0\\\overline F=9\text{km}\angle 180^{\circ}\\\overline G=4\text{km}\angle 270^{\circ}\\\overline H=16\text{km}\angle 90^{\circ}[/tex]Ditanyakan:[tex]F_r,\theta_r=?[/tex]Alternatif penyelesaian:[tex]E_x=6\text{km}\cos 0=6\text{km}(1)=6\text{km}\\F_x=9\text{km}\cos180^{\circ}=9\text{km}(-1)=-9\text{km}\\G_x=4\text{km}\cos270^{\circ}=4\text{km}(0)=0\\\\F_{rx}=E_x+F_x+G_x\\F_{rx}=6\text {km}+(-9\text{km})+0\\F_{rx}=-3\text {km}[/tex][tex]E_y=6\text{km}\sin 0=6\text{km}(0)=0\\F_y=9\text{km}\sin180^{\circ}=9\text{km}(0)=0\\G_y=4\text{km}\sin270^{\circ}=4\text{km}(-1)=-4\text{km}\\\\F_{ry}=E_y+F_y+G_y\\F_{ry}=0+0+(-4\text{km})\\F_{ry}=-4\text{km}[/tex][tex]F_r=\sqrt{F_{rx}^2+F_{ry}^2}\\F_r=\sqrt{(-3\text{km})^2+(-16\text {km})^2}\\F_r=\sqrt{9\text{km}^2+256\text {km}^2}\\F_r=\sqrt{265\text {km}^2}\\F_r=16,29\text {km}[/tex][tex]\tan \theta_r=\frac{F_{ry}}{F_{rx}}\\\tan \theta_r=\frac{-4}{-3}\\\theta_r=-233,13^{\circ}[/tex]Jadi arah resultan vektor adalah 233,13° (barat daya) dan nilai resultan vektornya 16,29 km.