VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In Matematika / Sekolah Menengah Atas | 2025-08-21

pliss bangett kaka-kaka cantik/ganteng jawab dengan cara mengerjakannya, soalny belum diterangkan guru lgsg dikasi tugas aku kasih 50 poin jadi plis banget bantuu akuu​

Asked by syrnsiauw

Answer (3)

The simplest form of a fraction is exactly what you just described.

Answered by MathG33k | 2024-06-10

It's in it's simplest form

Answered by Laurenxoxxo | 2024-06-10

Jawaban:Oke, mari kita bahas soal nomor 5, 6, dan 7 dari gambar tersebut satu per satu. 5. Buktikan bahwa: a. ²log x = ⁴log x² * Ruas kanan: ⁴log x² = (1/²) ²log x² = (1/2) * 2 * ²log x = ²log x = Ruas kiri. Terbukti. b. ᵃlog x = ᵃ²log x² * Ruas kanan: ᵃ²log x² = (1/²) ᵃlog x² = (1/2) * 2 * ᵃlog x = ᵃlog x = Ruas kiri. Terbukti. c. ᵉlog (x + √(x²-1)) = -ᵉlog (x - √(x²-1)) * Perhatikan bahwa (x + √(x²-1)) * (x - √(x²-1)) = x² - (x² - 1) = 1.* Maka, ᵉlog (x + √(x²-1)) + ᵉlog (x - √(x²-1)) = ᵉlog ((x + √(x²-1)) * (x - √(x²-1))) = ᵉlog 1 = 0* Jadi, ᵉlog (x + √(x²-1)) = -ᵉlog (x - √(x²-1)). Terbukti. d. log ((x+√(x²-1))/(x-√(x²-1))) = 2 log (x + √(x²-1)) * log ((x+√(x²-1))/(x-√(x²-1))) = log ((x+√(x²-1))/(x-√(x²-1)) * ((x+√(x²-1))/(x+√(x²-1))))* = log ((x+√(x²-1))² / (x² - (x²-1))) = log ((x+√(x²-1))² / 1) = log (x+√(x²-1))²* = 2 log (x + √(x²-1)). Terbukti. e. (log (x+h) - log x) / h = log (1 + h/x)^(1/h) * Ruas kiri: (log (x+h) - log x) / h = (log((x+h)/x)) / h = (log(1 + h/x)) / h* = (1/h) * log(1 + h/x) = log(1 + h/x)^(1/h). Terbukti. f. log (y / (a + √(a² + y²))) = log ((√(a² + y²) - a) / y) * Kalikan ruas kiri dengan (√(a² + y²) - a) / (√(a² + y²) - a):log (y / (a + √(a² + y²))) * ((√(a² + y²) - a) / (√(a² + y²) - a))= log (y (√(a² + y²) - a) / ((a + √(a² + y²)) * (√(a² + y²) - a)))= log (y (√(a² + y²) - a) / (a² + y² - a²))= log (y (√(a² + y²) - a) / y²)= log ((√(a² + y²) - a) / y). Terbukti. g. Jika y = ᵉlog x - ᵉlog (1+x), x>0, maka x = eʸ / (1 - eʸ) * y = ᵉlog x - ᵉlog (1+x) = ᵉlog (x / (1+x))* eʸ = x / (1+x)* eʸ (1+x) = x* eʸ + xeʸ = x* eʸ = x - xeʸ = x(1 - eʸ)* x = eʸ / (1 - eʸ) . Terbukti. 6. Hitunglah: a. 25^(⁵log 7) * 25^(⁵log 7) = (5²)^(⁵log 7) = 5^(2 * ⁵log 7) = 5^(⁵log 7²) = 5^(⁵log 49) = 49 b. (3 / ⁴√27)^(3√3 log 4) * (3 / 27^(1/4))^(3√(3) log 4) = (3 / (3³)^(1/4))^(3 * 3^(1/2) log 4) = (3 / 3^(3/4))^(3^(3/2) log 4)* = (3^(1/4))^(3^(3/2) log 4) = (3^(1/4))^(3^(3/2) log 2²) = (3^(1/4))^(2 * 3^(3/2) log 2)* = 3^(1/4 * 2 * 3^(3/2) log 2) Ini terlalu rumit. Periksa kembali soalnya. c. 7^(⁷log 115 - ⁷log 5) * 7^(⁷log 115 - ⁷log 5) = 7^(⁷log (115/5)) = 7^(⁷log 23) = 23 d. 5^(2 * ⁵log 3 + 3 * ⁵log 2) * 5^(2 * ⁵log 3 + 3 * ⁵log 2) = 5^(⁵log 3² + ⁵log 2³) = 5^(⁵log 9 + ⁵log 8) = 5^(⁵log (9*8)) = 5^(⁵log 72) = 72 e. 36^(4 * ⁶log √6 - ⁶log 9) * 36^(4 * ⁶log √6 - ⁶log 9) = 36^(4 * ⁶log 6^(1/2) - ⁶log 9) = 36^(4 * (1/2) * ⁶log 6 - ⁶log 9)* = 36^(2 * ⁶log 6 - ⁶log 9) = 36^(2 * 1 - ⁶log 9) = 36^(2 - ⁶log 9) = 36^(⁶log 36 - ⁶log 9)* = 36^(⁶log (36/9)) = 36^(⁶log 4) = (6²)^(⁶log 4) = 6^(2 * ⁶log 4) = 6^(⁶log 4²) = 6^(⁶log 16) = 16 cara soal no 7 ada pada lampiran gambarSemoga penjelasan ini lebih jelas dan lengkap!

Answered by ara1412 | 2025-08-21