1000 mL = 1 L
2 * 1000 = 2000
2000 mL of lemonade
2000/200 = 10
Answer: 10 cups
Calculating the Number of Paper Cups Filled from a Jug
The question asks how many 200 mL paper cups can be filled from a 2 liter jug of lemonade. To calculate this, you need to know the conversion between liters and milliliters, as well as being able to perform simple division.
Firstly, understand that 1 liter is equivalent to 1,000 milliliters. Therefore, 2 liters equals 2,000 milliliters. Since each paper cup holds 200 milliliters, you divide the total milliliters in the jug by the milliliters that each cup can hold:
2,000 milliliters ÷ 200 milliliters per cup = 10 cups
So, a 2 liter jug can fill ten 200 mL paper cups.
From a 2-liter jug of lemonade, you can fill 10 paper cups that are each 200 mL in size. This is calculated by converting liters to milliliters and then dividing the total volume by the volume of each cup. Specifically, 2 liters equals 2000 mL, which divided by 200 mL per cup equals 10 cups.
;
Jawaban:hitung gabungkan fungsi-fungsi tersebut: Diketahui: - f(x) = 2x / (x - 1)- g(x) = (x^2 - 1) / (4x) Penyelesaian: a. f(x) + g(x) = - (2x / (x - 1)) + ((x^2 - 1) / (4x))- Samakan penyebut: (8x^2 + (x^2 - 1)(x - 1)) / (4x(x - 1))- Sederhanakan: (8x^2 + x^3 - x^2 - x + 1) / (4x^2 - 4x)- Hasil: (x^3 + 7x^2 - x + 1) / (4x^2 - 4x) b. f(x) - g(x) = - (2x / (x - 1)) - ((x^2 - 1) / (4x))- Samakan penyebut: (8x^2 - (x^2 - 1)(x - 1)) / (4x(x - 1))- Sederhanakan: (8x^2 - x^3 + x^2 + x - 1) / (4x^2 - 4x)- Hasil: (-x^3 + 9x^2 + x - 1) / (4x^2 - 4x) c. g(x) - f(x) = - ((x^2 - 1) / (4x)) - (2x / (x - 1))- Samakan penyebut: ((x^2 - 1)(x - 1) - 8x^2) / (4x(x - 1))- Sederhanakan: (x^3 - x^2 - x + 1 - 8x^2) / (4x^2 - 4x)- Hasil: (x^3 - 9x^2 - x + 1) / (4x^2 - 4x) d. f(x) . g(x) = - (2x / (x - 1)) * ((x^2 - 1) / (4x))- Sederhanakan: (2x(x^2 - 1)) / (4x(x - 1))- Faktorkan (x^2 - 1): (2x(x + 1)(x - 1)) / (4x(x - 1))- Sederhanakan: (x + 1) / 2 e. f(x) / g(x) = - (2x / (x - 1)) / ((x^2 - 1) / (4x))- Ubah menjadi perkalian dengan kebalikan: (2x / (x - 1)) * (4x / (x^2 - 1))- Sederhanakan: (8x^2) / ((x - 1)(x^2 - 1))- Faktorkan (x^2 - 1): (8x^2) / ((x - 1)(x + 1)(x - 1))- Hasil: (8x^2) / ((x + 1)(x - 1)^2) f. g(x) / f(x) = - ((x^2 - 1) / (4x)) / (2x / (x - 1))- Ubah menjadi perkalian dengan kebalikan: ((x^2 - 1) / (4x)) * ((x - 1) / (2x))- Sederhanakan: ((x^2 - 1)(x - 1)) / (8x^2)- Faktorkan (x^2 - 1): ((x + 1)(x - 1)(x - 1)) / (8x^2)- Hasil: ((x + 1)(x - 1)^2) / (8x^2) Semoga penjelasan ini membantu!
Penjelasan dengan langkah-langkah:Penjelasan terlampir pada gambar.