VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In Matematika / Sekolah Menengah Pertama | 2025-08-21

metode eliminasi -2×+5y=-49 4×+6y= 70​

Asked by alpikakurniawati67

Answer (4)

1.Her 2. Her 3. I 4. Him 5. Us 6.Him 7.Us 8. Me 9.Us 10. Her 11.Her 12. Him 13. Her 14.Me 15. Me 16. I 17.Him 18. They 19. Her 20. Him

Answered by briariebel | 2024-06-10

You have correctly identified most of the pronouns. Just remember that nominative pronouns are used as the subject and objective pronouns are used as the object. For the answers, you have a good understanding of when to use each type of pronoun.
;

Answered by briariebel | 2024-12-23

Jawaban:cari selesaikan sistem persamaan ini menggunakan metode eliminasi:Sistem Persamaan:1. -2x + 5y = -492. 4x + 6y = 70 Langkah-langkah:1. Pilih Variabel untuk Dieliminasi: Dalam hal ini, akan lebih mudah mengeliminasi x karena kita bisa membuat koefisien x di kedua persamaan menjadi berlawanan dengan mengalikan persamaan pertama dengan suatu angka.2. Kalikan Persamaan:- Kalikan persamaan pertama dengan 2:- 2 * (-2x + 5y) = 2 * (-49)- -4x + 10y = -983. Susun Persamaan Baru: Sekarang kita punya sistem persamaan baru:- -4x + 10y = -98- 4x + 6y = 704. Eliminasi Variabel: Tambahkan kedua persamaan tersebut:- (-4x + 10y) + (4x + 6y) = -98 + 70- Perhatikan bahwa -4x dan 4x saling menghilangkan.- 16y = -285. Selesaikan untuk y: Bagi kedua sisi dengan 16:- y = -28 / 16- y = -7 / 4 atau -1.756. Substitusikan Nilai y: Sekarang kita substitusikan nilai y ke salah satu persamaan awal untuk mencari x. Kita gunakan persamaan pertama:- -2x + 5y = -49- -2x + 5 * (-7/4) = -49- -2x - 35/4 = -497. Selesaikan untuk x:- -2x = -49 + 35/4- -2x = (-196 + 35) / 4- -2x = -161 / 4- x = (-161 / 4) / -2- x = 161 / 8 atau 20.125Solusi:- x = 161 / 8 atau 20.125- y = -7 / 4 atau -1.75

Answered by ara1412 | 2025-08-21

Jawab:Penjelasan dengan langkah-langkah:Elimination Method  The given system of linear equations is: \begin{enumerate} \item \(-2x+5y=-49\) \item \(4x+6y=70\) \end{enumerate}  Step-by-step Solution  \begin{enumerate} \item The first equation is multiplied by \(2\) to make the coefficients of \(x\) opposites. This results in \(-4x+10y=-98\). \item The modified first equation, \(-4x+10y=-98\), is added to the second equation, \(4x+6y=70\). \item The \(x\) terms are eliminated, yielding \(16y=-28\). \item The value of \(y\) is found by dividing both sides by \(16\), resulting in \(y=\frac{-28}{16}=\frac{-7}{4}\). \item The value of \(y=\frac{-7}{4}\) is substituted into the first original equation, \(-2x+5y=-49\). \item This substitution leads to \(-2x+5(\frac{-7}{4})=-49\). \item The equation is simplified to \(-2x-\frac{35}{4}=-49\). \item To isolate the \(x\) term, \(\frac{35}{4}\) is added to both sides: \(-2x=-49+\frac{35}{4}\). \9. The right side is simplified: \(-2x=\frac{-196+35}{4}=\frac{-161}{4}\). \10. Finally, \(x\) is found by dividing both sides by \(-2\): \(x=\frac{-161}{4\times -2}=\frac{-161}{-8}=\frac{161}{8}\). \end{enumerate}  Final Answer  The solution to the system of equations is \(x=\frac{161}{8}\) and \(y=\frac{-7}{4}\).

Answered by hotelpoornaveg | 2025-08-21