n − t h e n u mb er 10 < n < 18 i s t h e s u m o f tw o i d e n t i c a l o dd n u mb ers . T h e s u m o f tw o i d e n t i c a l n u mb ers i s e v e n . = 12 = 6 + 6 → 6 i s n ′ t o dd n u mb er = 14 = 7 + 7 → 7 i s o dd n u mb er = 16 = 8 + 8 → 8 i s n ′ t o dd n u mb er A n s w er : T hi s n u mb er i s 7.
7 +7 +14. 14 is the number the only odd number which we add and get the sum in between 10 and 18.
The mystery number is 14, as it is the only number between 10 and 18 that can be expressed as the sum of two identical odd numbers (7+7).
;
Jawaban:[tex]1 \frac{1}{12} [/tex]Penjelasan dengan langkah-langkah:[tex]8 \frac{2}{3} \div 8 = \frac{26}{3} \div 8 \\ = \frac{26}{3} \times \frac{1}{8} \\ = \frac{26}{24} \\ = 1 \frac{2}{24} \\ = 1 \frac{1}{12} [/tex]