VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In Matematika / Sekolah Menengah Atas | 2025-08-22

Tolong dijawab pakai cara, 50’ poin

Asked by michelleglebova2010

Answer (4)

a --> length b --> width { a = 2 b + 3 2 a + 2 b = 72 ​ { a = 2 b + 3 2 ( 2 b + 3 ) + 2 b = 72 ​ { a = 2 b + 3 4 b + 6 + 2 b = 72 ​ { a = 2 b + 3 6 b = 66∣ : 6 ​ { a = 2 b + 3 b = 11 ​ { a = 2 ∗ 11 + 3 b = 11 ​ { a = 25 b = 11 ​

Answered by MattD | 2024-06-10

[ t e x ] x − l e n g t h y − w i d t h x = 2 y + 3 P er im e t er : 2 x + 2 y = 72 S ys t e m o f e q u a t i o n s : { 2 x + 2 y x = 2 y + 3 ​ S u b s t i t u t in g x = 2 y + 3 2 ( 2 y + 3 ) + 2 y = 72 4 y + 6 + 2 y = 72 66 y = 60∣ : 6 y = 11 x = 2 y + 3 = 2 ∗ 11 + 3 = 25 [/tex]

Answered by luana | 2024-06-10

The pool has dimensions of 25 feet in length and 11 feet in width. This was found using a system of equations based on the relationship between the length and width and the perimeter of the pool. By substituting and solving for one variable in terms of the other, we determined the dimensions step by step.
;

Answered by MattD | 2025-05-13

Jawaban:Soal: Nilai a yang memenuhi persamaan ³log a . ⁶log a . ³log √a = ³log a . ⁶log a + ³log a . ³log √a + ⁶log a . ³log √a adalah... 1. Sederhanakan Persamaan:- Ingat bahwa ³log √a = ³log a^(1/2) = (1/2) . ³log a- Substitusikan ini ke dalam persamaan:³log a . ⁶log a . (1/2) . ³log a = ³log a . ⁶log a + ³log a . (1/2) . ³log a + ⁶log a . (1/2) . ³log a- Kalikan kedua sisi dengan 2 untuk menghilangkan pecahan:³log a . ⁶log a . ³log a = 2 . ³log a . ⁶log a + ³log a . ³log a + ⁶log a . ³log a- Pindahkan semua suku ke satu sisi:³log a . ⁶log a . ³log a - 2 . ³log a . ⁶log a - ³log a . ³log a - ⁶log a . ³log a = 02. Faktorkan:- Faktorkan ³log a . ⁶log a dari dua suku pertama dan ³log a dari dua suku berikutnya:³log a . ⁶log a (³log a - 2) - ³log a (³log a + ⁶log a) = 03. Analisis Kasus:- Kasus 1: ³log a = 0Jika ³log a = 0, maka a = 3⁰ = 1. Tetapi, jika a = 1, maka ⁶log a juga akan menjadi 0, dan persamaan awal akan menjadi 0 = 0, yang memenuhi. Jadi, a = 1 adalah solusi. Tetapi 1 bukan salah satu pilihan jawaban, jadi kita lanjut ke kasus berikutnya.- Kasus 2: ⁶log a = 0Jika ⁶log a = 0, maka a = 6⁰ = 1. Tetapi, jika a = 1, maka ³log a juga akan menjadi 0, dan persamaan awal akan menjadi 0 = 0, yang memenuhi. Jadi, a = 1 adalah solusi. Tetapi 1 bukan salah satu pilihan jawaban, jadi kita lanjut ke kasus berikutnya.- Kasus 3: Persamaan dalam kurung sama dengan nol- ³log a - 2 = 0 atau ³log a + ⁶log a = 0³log a⁶log a (³log a - 2) - ³log a (³log a + ⁶log a) = 0- Kasus 4: ³log a⁶log a = ³log a + ⁶log a³log a⁶log a - ³log a - ⁶log a = 06log a = a.log 6Kemungkinana = 164. Uji Pilihan Jawaban:- Karena kita tidak bisa memfaktorkan lebih lanjut dengan mudah, kita coba substitusikan pilihan jawaban ke persamaan awal:- Pilihan A: a = 1/3- Pilihan B: a = 1/9- Pilihan C: a = 16- Pilihan D: a = 96- Pilihan E: a = 162- Setelah mencoba pilihan C (a = 16), kita dapatkan:- ³log 16 . ⁶log 16 . ³log √16 = ³log 16 . ⁶log 16 + ³log 16 . ³log √16 + ⁶log 16 . ³log √165. Substitusi nilai a=16 ke persamaan- ³log 16 . ⁶log 16 . (1/2) . ³log 16 = ³log 16 . ⁶log 16 + ³log 16 . (1/2) . ³log 16 + ⁶log 16 . (1/2) . ³log 16- ³log 16 . ⁶log 16 . (1/2) . ³log 16 = ³log 16 . ⁶log 16 + ⁶log 16 . ³log 16 Jawaban:yang paling mungkin adalah C. 16

Answered by ara1412 | 2025-08-22