AB = 4 x - 9 BC = 3 x + 5 AC = 7
B is in between A and C. So AB + BC = AC
4x - 9 + 3 x + 5 = 7 7 x - 4 = 7 take -4 from LHS to the R H S (right hand side) it becomes +4 7 x = 7 + 4 = 11 x = 11/7 = 1.571
By using the relationship between the lengths of segments where B lies between A and C, we derived that x = 7 11 , which is approximately 1.57. This was done by setting up the equation A B + BC = A C and solving for x .
;
Jawaban: menyederhanakan dan mengubah ekspresi tersebut ke pangkat positif. Soal:Sederhanakan dan ubah ke pangkat positif:((2⁻¹ a⁻⁴ b² c⁻³) / (⅛ a⁻⁴ b⁻⁵ c⁶))⁻² Penyelesaian:1. Sederhanakan Pecahan di Dalam Kurung:- (2⁻¹ a⁻⁴ b² c⁻³) / (⅛ a⁻⁴ b⁻⁵ c⁶)- Ingat bahwa ⅛ = 2⁻³, maka:- (2⁻¹ a⁻⁴ b² c⁻³) / (2⁻³ a⁻⁴ b⁻⁵ c⁶)- Gunakan sifat pangkat (aᵐ / aⁿ = aᵐ⁻ⁿ):- 2⁻¹⁻⁽⁻³⁾ a⁻⁴⁻⁽⁻⁴⁾ b²⁻⁽⁻⁵⁾ c⁻³⁻⁶- 2² a⁰ b⁷ c⁻⁹- 4 b⁷ c⁻⁹ (karena a⁰ = 1)2. Pangkatkan dengan -2:- (4 b⁷ c⁻⁹)⁻²- Gunakan sifat pangkat (aᵐ)ⁿ = aᵐⁿ:- 4⁻² b⁷⁽⁻²⁾ c⁻⁹⁽⁻²⁾- 4⁻² b⁻¹⁴ c¹⁸3. Ubah Pangkat Negatif Menjadi Positif:- Ingat bahwa a⁻ⁿ = 1/aⁿ, maka:- (1/4²) * (1/b¹⁴) * c¹⁸- (1/16) * (1/b¹⁴) * c¹⁸4. Sederhanakan:- c¹⁸ / (16 b¹⁴) Kesimpulan: Hasil sederhananya dengan pangkat positif adalah c¹⁸ / (16 b¹⁴).