2 x + 3 y = − 12 ⇒ 3 y = − 2 x − 12 ⇒ y = − 3 2 x − 4 y = m x + b ∣∣ y = − 3 2 x − 4 ⇔ m = − 3 2 t h e p o in t s l o p e f or m : y − y 1 = m ( x − x 1 ) an d ( x 1 , y 1 ) = ( 2 , 5 ) y − 5 = − 3 2 ( x − 2 ) ⇒ y − 5 = − 3 2 x + 3 4 ⇒ y = − 3 2 x + 5 + 1 3 1 t h e s l o p e in t erce pt f or m : y = − 3 2 x + 6 3 1 t h e s l o p e : m = − 3 2 , t h e in t erce pt : b = 6 3 1
The equation of the line that passes through the point (2, 5) and is parallel to 2x + 3y = -12 is y = -\frac{2}{3}x + \frac{19}{3}. This was determined by finding the slope from the original equation and applying the point-slope formula. Simplifying the equation gives us the final result in slope-intercept form.
;
Jawaban:klo aku a. qalqalah sugra