The algebraic expression is 4 3 x 2 ;
The **statement **in an **algebraic expression **is 3/4x²
Writing the statement in an algebraic expression?
From the question, we have the following parameters that can be used in our computation:
**Statement **= three fourths the square of a number
Let x be the number
So, we have
three fourths the square of x
**three fourths **means 3/4
So, we have
3/4 the square of x
Lastly, we have
3/4x²
Hence, the **expression **is 3/4x²
Read more about expression at
https://brainly.com/question/30492964
#SPJ6
Three-fourths the square of a number can be represented in algebraic terms as 4 3 x 2 , where x is the unknown number. This expression indicates that you first square the number and then multiply the result by three-fourths.
;
[tex]f(x) = 2x + 3[/tex][tex]g(x) = 3x[/tex]Sehingga,[tex](A). \: (gof)(3) = g(f(3))[/tex][tex](gof)(3) = g(2(3) + 3)[/tex][tex](gof)(3) = g(6 + 3)[/tex][tex](gof)(3) = g(9)[/tex][tex](gof)(3) = 3(9)[/tex][tex](gof)(3) = 27[/tex][tex](B). \: (gof)( - 2) = g(f( - 2))[/tex][tex](gof)( - 2) = g(2( - 2) + 3)[/tex][tex](gof)( - 2) = g(( - 4) + 3)[/tex][tex](gof)( - 2) = g( - 1)[/tex][tex](gof)( - 2) = 3( - 1)[/tex][tex](gof)( - 2) = - 3[/tex][tex](C). \: (fog)(0) = f(g(0))[/tex][tex](fog)(0) = f(3(0))[/tex][tex](fog)(0) = f(0)[/tex][tex](fog)(0) = 2(0) + 3[/tex][tex](fog)(0) = 0 + 3[/tex][tex](fog)(0) = 3[/tex][tex](D). \: (gof)(x) = g(f(x))[/tex][tex](gof)(x) = g(2x + 3)[/tex][tex](gof)(x) = 3(2x + 3)[/tex][tex](gof)(x) = 6x + 9[/tex][tex](E). \: (fog)(x) = f(g(x))[/tex][tex](fog)(x) = f(3x)[/tex][tex](fog)(x) = 2(3x) + 3[/tex][tex](fog)(x) = 6x + 3[/tex]