There are so many words in this problem that it sounds complicated, and it's hard to see how simple it really is.
It tells you . . . She has 'x' male cousins. She has '2x' female cousins.
So, how many cousins does she have altogether ? (x + 2x) = 3x
Now it tells you . . . She has less than 23 cousins altogether.
Fine. So 3x is less than 23 .
How do you write that in algebra ?
*** 3x < 23***
Isn't it amazing how they can take something so simple and make it seem so complicated ? ! ?
To solve 3x < 23 , divide both sides by 3 to isolate x , which gives x < 7.67 . Therefore, x can be whole numbers from 0 to 7, leading to a maximum total of 21 cousins when x is 7. The calculations show how both male and female cousins are related to x .
;
Jawaban:soal:Kita diberikan fungsi komposit (f o g)(x) = 2x² - 2x + 5 dan f(x) = x² + 4. Kita perlu menentukan fungsi g(x). caranya:1. Kita tahu bahwa (f o g)(x) = f(g(x)). Jadi, kita punya f(g(x)) = 2x² - 2x + 5.2. Kita juga tahu bahwa f(x) = x² + 4. Jadi, kita bisa mengganti f(g(x)) dengan (g(x))² + 4.(g(x))² + 4 = 2x² - 2x + 53. Sekarang, kita akan mencari g(x).(g(x))² = 2x² - 2x + 5 - 4(g(x))² = 2x² - 2x + 14. Kita bisa melihat bahwa 2x² - 2x + 1 bukan kuadrat sempurna. Namun, jika ada kesalahan dalam soal dan seharusnya (f o g)(x) = (2x - 1)² + 4, maka:(g(x))² = (2x - 1)²g(x) = 2x - 1 atau g(x) = -(2x - 1) = 1 - 2x Asumsi:Karena soal awal tidak memiliki solusi yang sederhana, saya berasumsi ada kesalahan ketik dan fungsi kompositnya seharusnya (f o g)(x) = (2x - 1)² + 4. maka, salah satu kemungkinan fungsi g(x) adalah g(x) = 2x - 1.