VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In Matematika / Sekolah Menengah Atas | 2025-08-24

pak Edi membeli sebuah sepeda motor dari Diler yang menggunakan sistem anuitas pada pembayaran kreditnya.harga sepeda motor adalah 24.000.000 rupiah.dengan menggunakan tingkat bunga pertahun.pak Edi berencana melunasi kreditnya selama 36 bulan. a.hitunglah besar anuitas yg dibayar pak Edi,beserta caranyab.tentukan besaran cicilan perbulan, berserta caranya c.tentukan besar bunga dan angsuran bulan ke 2, berserta caranya d.buatlah tabel anuitas dari bulan ke 1-36​

Asked by salmafatikhatul93

Answer (4)

Pattern did the power of 4 shows:
Let’s have an example of the power of 4
=> 4 will be multiplied 4 times
=> 4 x 4 = 16
=> 16 x 4 = 64
=> 64 x 4 = 256
=> 256 x 4 = 1024
=> 1024 x 4 = 4096
=> 4096 x 4 = 16384
………………..
Did you notice the pattern? The last number of each answer always ends up with 4 and followed by 6.

Answered by taskmasters | 2024-06-10

The correct answer is:
The ones digit repeats from 4 to 6 over and over.
Explanation :
4 to the first power is 4.
4 to the second power is 16.
4 to the third power is 64; again the 4 in the ones digit repeats.
4 to the fourth power is 256; again the 6 in the ones digit repeats.
This pattern continues.

Answered by MsEHolt | 2024-06-11

The powers of 4 show a pattern where the last digit alternates between 4 and 6. For powers of 4, the last digit of 4 raised to an odd exponent is 4, while for even exponents, it is 6. This pattern helps in predicting the last digit of larger powers easily.
;

Answered by taskmasters | 2024-10-02

Jawaban:Tentu, saya akan bantu menghitung dan membuat tabel anuitas untuk Pak Edi. a. Hitunglah besar anuitas yang dibayar Pak Edi, beserta caranya Rumus anuitas: A = M \cdot \frac{i}{1 - (1 + i)^{-n}} Dengan: - A = Anuitas- M = Pinjaman awal (Rp24.000.000)- i = Tingkat bunga per bulan (18% per tahun atau 1.5% per bulan, yaitu 0.015)- n = Jumlah periode pembayaran (36 bulan) Maka: A = 24.000.000 \cdot \frac{0.015}{1 - (1 + 0.015)^{-36}} A = 24.000.000 \cdot \frac{0.015}{1 - (1.015)^{-36}} A = 24.000.000 \cdot \frac{0.015}{1 - 0.585} A = 24.000.000 \cdot \frac{0.015}{0.415} A = 24.000.000 \cdot 0.036 $A =

Answered by valentinesinaga00 | 2025-08-24