VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In Matematika / Sekolah Menengah Atas | 2025-08-24

x1 dan x2 adalah akar-akar persamaan x ^ 2 + 8mx - 2p = 0

Hitunglah m apabila :

a. x1= 2x2

C. x1= - 1/x2

Asked by nisrinazara26

Answer (3)

Option “A” is the correct example of a sentence that has a compound predicate. The sentence is “She washed the shells and dried them in the sun”. A compound predicate actually consists of two or more than two verbs having the same subject and joined by any conjunction like “or” or “and”. As far as the given sentence is concerned, we see that “She” is the subject and the subject is doing two different things. This is the reason behind taking this sentence as a compound predicate.

Answered by taskmasters | 2024-06-10

The correct answer is A. 'She washed the shells and dried them in the sun,' which contains a compound predicate as it has two verbs ('washed' and 'dried') sharing the same subject ('She'). The other options do not contain multiple verbs connected to the same subject.
;

Answered by taskmasters | 2025-03-28

Jawaban:Persamaan kuadrat: x² + 8mx - 2p = 0 - a = 1- b = 8m- c = -2p Sifat-sifat akar persamaan kuadrat: - x₁ + x₂ = -b/a = -8m- x₁ * x₂ = c/a = -2p a. Jika x₁ = 2x₂ - Substitusi x₁ = 2x₂ ke dalam persamaan x₁ + x₂ = -8m:2x₂ + x₂ = -8m3x₂ = -8mx₂ = -8m/3- Maka, x₁ = 2(-8m/3) = -16m/3- Substitusi x₁ dan x₂ ke dalam persamaan x₁ * x₂ = -2p:(-16m/3) * (-8m/3) = -2p128m²/9 = -2pm² = (-18p)/128m² = (-9p)/64 Nilai m = ±√((-9p)/64)   c. Jika x₁ = -1/x₂ - Substitusi x₁ = -1/x₂ ke dalam persamaan x₁ * x₂ = -2p:(-1/x₂) * x₂ = -2p-1 = -2pp = 1/2- Substitusi x₁ = -1/x₂ ke dalam persamaan x₁ + x₂ = -8m:(-1/x₂) + x₂ = -8m(x₂² - 1) / x₂ = -8m- Kita tahu bahwa x₁ * x₂ = -2p = -2(1/2) = -1, maka x₂ = -1/x₁- Maka x₂² = 1/x₁²- Persamaan (x₂² - 1) / x₂ = -8m menjadi :(1/x₁² - 1) / (-1/x₁) = -8m(1 - x₁²) / x₁² * (-x₁) = -8m(x₁² - 1) / x₁ = -8m- Karena x₁ * x₂ = -1 ,kita bisa gunakan x₁ = -1/x₂ untuk menyederhanakan persamaan awal:x² + 8mx - 2p = 0(-1/x₂)² + 8m(-1/x₂) - 2(1/2) = 01/x₂² - 8m/x₂ - 1 = 01 - 8mx₂ - x₂² = 0x₂² + 8mx₂ - 1 = 0- Dari persamaan x² + 8mx - 2p = 0, kita tahu x₁ + x₂ = -8m dan x₁ * x₂ = -1, jadi kita bisa gunakan sifat-sifat ini untuk mencari m.- Karena x₁ = -1/x₂, kita bisa substitusi:x₁ + x₂ = -8m-1/x₂ + x₂ = -8m(x₂² - 1) / x₂ = -8m- Kita tahu x₂ adalah akar dari persamaan x² + 8mx - 1 = 0, maka x₂² + 8mx₂ - 1 = 0, sehingga x₂² = 1 - 8mx₂.- Substitusi x₂² = 1 - 8mx₂ ke dalam persamaan (x₂² - 1) / x₂ = -8m:(1 - 8mx₂ - 1) / x₂ = -8m-8mx₂ / x₂ = -8m-8m = -8m Dari sini, kita tidak mendapatkan nilai m yang spesifik, tetapi kita tahu bahwa p = 1/2.

Answered by ara1412 | 2025-08-24