Let the numebrs be x and y.
x + y = 44 x = y + 20
Substituting the value of x,
(y + 20) + y = 44
2y + 20 = 44 2y = 24 y = 12.
x = y + 20 x = 12+ 20
Thus, x = 32.
Thus, the two numbers are 32 and 12.
The smaller number is 'x' . The larger number is (x+ 20)
Their sum is [ x + (x + 20 ]
2x + 20 = 44
Subtract 20 from each side:
2x = 24
Divide each side by 2 :
x = 12 and x + 20 = 32
The larger number is 32, and the smaller number is 12. These numbers satisfy both the condition of their sum being 44 and that the larger number is 20 more than the smaller number. We found these values by setting up and solving a system of equations.
;
Penjelasan dengan langkah-langkah:Karena z = 2 - 3i, maka: - Nilai x adalah bagian real dari bilangan kompleks z, sehingga x = 2.- Nilai y adalah bagian imajiner dari bilangan kompleks z, sehingga y = -3. Jadi, x = 2 dan y = -3.