VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In Matematika / Sekolah Menengah Pertama | 2025-08-24

Mohon ijin kakak-kakak sekalian atas bantuannya menjawab soal dibawah ini, dikarenakan bagi saya ini adalah soal yang susah dan saya butuh bantuan kakak-kakak sekalian[tex]2.) \: {24}^{2} + {23 - }^{2x = 17} \: nilai \: dari \: {2}^{2x} = [/tex][tex]3.) \sqrt[3]{ {8}^{x + 2} } = \frac{1}{32} {}^{(2 - x)} \: maka \: nilai \: 8x - {x}^{2} adalah...[/tex]​

Asked by aretharumbewas

Answer (3)

Sure you do.
What is the x-intercept ? It's the point where the graph crosses the x-axis. But y=0 at every point on the x-axis ! So the x-intercept is the point where
5x + 3(0) = k 5x = k x = 0.2 k
Similarly ... What is the y-intercept ? It's the point where the graph crosses the y-axis. But x=0 at every point on the y-axis ! So the y-intercept is the point where
5(0) + 3y = k 3y = k y = k/3
The sum of the x- and y-intercepts is 32.5 . 0.2k + k/3 = 32.5 Multiply each side by 5 : k + 5k/3 = 162.5 Multiply each side by 3 : 3k + 5k = 487.5 8k = 487.5 Divide each side by 8 : k = 60.9375
The x-intercept is (0.2k, 0) = the point (12.1875, 0) .
The y-intercept is (0, k/3) = the point (0, 20.3125) .
Those are the two points. Now it wants you to find the distance between them. Do you remember how to find the distance between 2 points ?
Find the (difference of their x-values) and square it. Find the (difference of their y-values) and square it. Add the two squares together. Take the square root of the sum. That's the distance between the points.
(12.1875)² + (20.3125)² = the square of the distance.
If you don't get 23.688 for the distance, then check your arithmetic.

Answered by AL2006 | 2024-06-10

The length of the line segment joining the x- and y-intercepts of the line 5 x + 3 y = k is approximately 23.75 units. We found the intercepts, calculated their coordinates based on k, and then used the distance formula to find the length of the segment connecting those two points.
;

Answered by AL2006 | 2024-12-26

Jawaban:2. Nilai dari 2^(2x) - Persamaan: 24² + 2^(3 - 2x) = 17- Ubah persamaan menjadi: 2^(3 - 2x) = 17 - 24²- Hitung 24²: 24² = 576- Persamaan menjadi: 2^(3 - 2x) = 17 - 576- Hitung 17 - 576: 17 - 576 = -559- Persamaan menjadi: 2^(3 - 2x) = -559 Sepertinya ada kesalahan dalam soal. Seharusnya: 2^(4x) + 2^(3 - 2x) = 17 Misalkan y = 2^(3 - 2x), maka: 16 + y = 17, sehingga y = 1. 2^(3 - 2x) = 13 - 2x = 02x = 3x = 3/2 Maka 2^(2x) = 2^(2 * 3/2) = 2^3 = 8   3. Nilai dari 8x - x² - Persamaan: ³√(8x + 2) = (1/32)^(2 - x)- Ubah 1/32 menjadi bentuk pangkat: 1/32 = 2^(-5)- Persamaan menjadi: ³√(8x + 2) = (2^(-5))^(2 - x)- Sederhanakan: ³√(8x + 2) = 2^(-10 + 5x)- Pangkatkan kedua sisi dengan 3: (³√(8x + 2))^3 = (2^(-10 + 5x))^3- Sederhanakan: 8x + 2 = 2^(-30 + 15x) Dari sini, kita bisa mencoba-coba nilai x yang mungkin. Jika x = 2: 8(2) + 2 = 182^(-30 + 15(2)) = 2^0 = 1 Jika x = -2: 8(-2) + 2 = -142^(-30 + 15(-2)) = 2^(-60) Tidak ada solusi sederhana di sini.

Answered by ara1412 | 2025-08-24