Exactly the same way you find any missing item in any other subject: You take the information you're given, and you collect everything you know about relationships between the information you have and the item you have to find. Finally, you use the relationships and the given information to find the value of the missing item.
The process you'll use to find the circumference of a circle will depend on what information you DO have about the circle.
the length of the circle is the same thing as its circumference circumference= 2×π×radius²
To find the circumference of a circle, you can use the formulas C = 2 π r if the radius is known or C = π d if the diameter is known. You can also measure the circumference directly with a flexible tape measure. Understanding the circumference helps in various real-life applications and foundational in geometry.
;
Penyelesaian[tex]\frac{3\sqrt{2} + \sqrt{3}}{5\sqrt{6}} - \sqrt{2}[/tex][tex]= \frac{3\sqrt{2}}{5\sqrt{6}} + \frac{\sqrt{3}}{5\sqrt{6}} - \sqrt{2}[/tex][tex]=\frac{3\sqrt{2}}{5\sqrt{6}}[/tex][tex]= \frac{3}{5}\cdot \frac{\sqrt{2}}{\sqrt{6}}[/tex][tex]= \frac{3}{5} \cdot \frac{1}{\sqrt{3}}[/tex][tex]= \frac{3}{5\sqrt{3}}[/tex][tex]=\frac{3}{5\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}[/tex][tex]= \frac{3\sqrt{3}}{15}[/tex][tex]= \frac{\sqrt{3}}{5}[/tex][tex]=\frac{\sqrt{3}}{5\sqrt{6}}[/tex][tex]= \frac{1}{5} \cdot \frac{\sqrt{3}}{\sqrt{6}}[/tex][tex]= \frac{1}{5} \cdot \frac{1}{\sqrt{2}}[/tex][tex]= \frac{1}{5\sqrt{2}}[/tex][tex]=\frac{1}{5\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}[/tex][tex]= \frac{\sqrt{2}}{10}[/tex][tex]= \frac{\sqrt{3}}{5} + \frac{\sqrt{2}}{10} - \sqrt{2}[/tex][tex]=\frac{\sqrt{2}}{10} - \sqrt{2}[/tex][tex]= \frac{\sqrt{2}}{10} - \frac{10\sqrt{2}}{10}[/tex][tex]= -\frac{9\sqrt{2}}{10}[/tex]