VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In Matematika / Sekolah Menengah Atas | 2025-08-25

3. h(x) = x² Tentukan: p. f○h q. h○f r. g○h s. h○g t. h-¹ u. h○h-¹ v. h-¹○h w. Kesimpulan 6: [ xx.8.2025] x. f-¹○g-¹ y. g-¹○f-¹ z. ( f○g )-¹​

Asked by ramadhaniindah666

Answer (4)

The pencil work in your workbook is correct, EXCEPT for the very last number ...
The last number is (4 x 3). That's '12', not '7'.

Answered by AL2006 | 2024-06-10

The answer is z²+7z+12 Just use FOIL.

Answered by leeners | 2024-06-10

To simplify ( z + 4 ) ( z + 3 ) , use the distributive property or FOIL method to get z 2 + 7 z + 12 . You multiply the first, outer, inner, and last terms, then combine like terms. The final result is a quadratic expression.
;

Answered by AL2006 | 2025-06-12

Jawaban:soal:Jika h(x) = x², tentukan berbagai komposisi fungsi dan invers. penjelasan:Karena f(x) dan g(x) tidak diberikan, saya akan berasumsi f(x) = x + 1 dan g(x) = 2x. caranya:p. f○h = f(h(x)) = f(x²) = x² + 1q. h○f = h(f(x)) = h(x+1) = (x+1)² = x² + 2x + 1r. g○h = g(h(x)) = g(x²) = 2(x²) = 2x²s. h○g = h(g(x)) = h(2x) = (2x)² = 4x²t. h⁻¹: - h(x) = x²- y = x²- x = √y- h⁻¹(x) = √xu. h○h⁻¹ = h(h⁻¹(x)) = h(√x) = (√x)² = xv. h⁻¹○h = h⁻¹(h(x)) = h⁻¹(x²) = √(x²) = |x| (nilai mutlak dari x)w. Kesimpulan:- h○h⁻¹ = x (untuk x ≥ 0)- h⁻¹○h = |x|xx. f⁻¹○g⁻¹:* f(x) = x + 1 => f⁻¹(x) = x - 1* g(x) = 2x => g⁻¹(x) = x/2* f⁻¹○g⁻¹ = f⁻¹(g⁻¹(x)) = f⁻¹(x/2) = (x/2) - 1x. f⁻¹○g⁻¹ = (x/2) - 1y. g⁻¹○f⁻¹:* g⁻¹○f⁻¹ = g⁻¹(f⁻¹(x)) = g⁻¹(x-1) = (x-1)/2z. (f○g)⁻¹:* f○g = f(g(x)) = f(2x) = 2x + 1* y = 2x + 1* x = (y - 1) / 2* (f○g)⁻¹(x) = (x - 1) / 2 Jawaban :p. x² + 1q. x² + 2x + 1r. 2x²s. 4x²t. √xu. xv. |x|xx. (x/2) - 1x. (x/2) - 1y. (x-1)/2z. (x - 1) / 2

Answered by ara1412 | 2025-08-25