VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In Matematika / Sekolah Menengah Atas | 2025-08-25


1.Tentukan penyelesaian persamaan-persamaan berikut dengan cara memfaktorkan
a)4x²+12x+5=0
b)2²x+3x-35=0
c)9²x-30x+25=0

Asked by jriiajehh26

Answer (4)

-- In a series circuit, the current ( I ) is the same at every point.
-- The power dissipated by any section of the circuit is I² x Resistance.
-- The wire has very low resistance, so I²R is very low dissipated power.
-- The filament in the bulb has most all of the resistance in the circuit, so it dissipates virtually all the power of the circuit, and certainly much more than the wires do.

Answered by AL2006 | 2024-06-10

In a series circuit, the copper wire has low resistance, resulting in little power dissipation, while the bulb has high resistance, allowing it to glow by converting electrical energy into light. Consequently, most of the voltage is utilized by the bulb, causing it to illuminate. The wire remains unchanged because it does not generate significant heat or light.
;

Answered by AL2006 | 2025-06-15

Penjelasan dengan langkah-langkah:a. 4x² + 7x + 5 = 0(2x) (2x + 1) + 5 (2x + 1) = 0(2x + 5) (2x + 1) = 02x + 5 = 02x = - 5x = - 5/2 = - 2½2x + 1 = 02x = - 1x = - ½HP = {- 2 ½, - ½}b. 2x² + 3x - 35 = 0(2x) (x + 5) - 7 (x + 5) = 0(2x - 7) (x + 5) = 02x - 7 = 02x = 7x = 7/2 = 3 ½x + 5 = 0x = - 5HP = {3 ½, - 5}c. 9x² - 30x + 25 = 03x (3x - 5) - 5 (3x - 5) = 0(3x - 5) (3x - 5) = 03x - 5 = 03x = 5x = 5/3 = 1 ⅔HP = {1 ⅔}

Answered by arnymatematika | 2025-08-25

Jawaban:a) 4x² + 12x + 5 = 0- (2x + 1)(2x + 5) = 0- x = -1/2 atau x = -5/2 b) 2x² + 3x - 35 = 0- (x + 5)(2x - 7) = 0- x = -5 atau x = 7/2 c) 9x² - 30x + 25 = 0- (3x - 5)² = 0- x = 5/3penjelasana) 4x² + 12x + 5 = 01. Faktorkan persamaan kuadrat:- Cari dua bilangan yang dikalikan menghasilkan (4)(5) = 20 dan dijumlahkan menghasilkan 12. Bilangan tersebut adalah 2 dan 10.- Ubah persamaan menjadi: 4x² + 2x + 10x + 5 = 0- Faktorkan dengan mengelompokkan: 2x(2x + 1) + 5(2x + 1) = 0- Faktorkan lagi: (2x + 1)(2x + 5) = 02. Cari nilai x:- 2x + 1 = 0 => 2x = -1 => x = -1/2- 2x + 5 = 0 => 2x = -5 => x = -5/23. Penyelesaian:- x = -1/2 atau x = -5/2   b) 2x² + 3x - 35 = 0(Saya asumsikan ini seharusnya 2x², bukan 2²x)1. Faktorkan persamaan kuadrat:- Cari dua bilangan yang dikalikan menghasilkan (2)(-35) = -70 dan dijumlahkan menghasilkan 3. Bilangan tersebut adalah -7 dan 10.- Ubah persamaan menjadi: 2x² - 7x + 10x - 35 = 0- Faktorkan dengan mengelompokkan: x(2x - 7) + 5(2x - 7) = 0- Faktorkan lagi: (x + 5)(2x - 7) = 02. Cari nilai x:- x + 5 = 0 => x = -5- 2x - 7 = 0 => 2x = 7 => x = 7/23. Penyelesaian:- x = -5 atau x = 7/2   c) 9x² - 30x + 25 = 0(Saya asumsikan ini seharusnya 9x², bukan 9²x)1. Faktorkan persamaan kuadrat:- Perhatikan bahwa ini adalah bentuk kuadrat sempurna: (3x - 5)² = 02. Cari nilai x:- 3x - 5 = 0 => 3x = 5 => x = 5/33. Penyelesaian:- x = 5/3 (akar ganda)

Answered by ara1412 | 2025-08-25