x is multiple of 9 as well as 12.
Thus, smallest value will be 36 ( 9 *4 = 36, 12 * 3 = 36)
3 and 12 are not the multiples of 9.
72 is a larger multiple than 36; thus, the correct answer is 36.
If the positive integer x is a multiple of 9 and also a multiple of 12 then the smallest possible value of x is 36, option D is correct.
To find the smallest possible value of x that is both a multiple of 9 and a multiple of 12.
Find the least common multiple (LCM) of 9 and 12.
The prime factorization of 9 is 3 2 , and
the prime factorization of 12 is 2 2 × 3.
To find the LCM , we take the highest power of each prime factor:
L CM = 2 2 × 3 2
L CM = 36
Therefore, the smallest possible value of x is 36, which corresponds to option (D).
To learn more on Factorization click:
https://brainly.com/question/29763746
#SPJ6
The smallest positive integer x that is a multiple of both 9 and 12 is 36, which is option (D). To find this, we calculated the least common multiple (LCM) of 9 and 12 using their prime factorizations.
;
Jawaban:1. Bunga Tunggal- Diketahui:- M₀ (Modal awal) = Rp100.000,00- i (Bunga per tahun) = 3% = 0,03- n (Waktu) = 4 tahun- Ditanya: Mₙ (Modal setelah n tahun) = ?- Jawab:- Mₙ = M₀ (1 + n × i)- M4 = 100.000 (1 + 4 × 0,03)- M4 = 100.000 (1 + 0,12)- M4 = 100.000 (1,12)- Mₙ = 112.000- Jawaban: b. Rp112.000,00 2. Bunga Majemuk - Rumus: Mₙ = M₀ (1 + i)^n- Mₙ (Modal Akhir) = Rp146.410,00- M₀ (Modal Awal) = Rp100.000,00- i (Bunga per Tahun) = 10% = 0,1- n (Waktu) = ?- 146.410 = 100.000 (1 + 0,1)^n- 1,4641 = (1,1)^n- n = 4 tahun- Jawaban: c. 4 3. Bunga Majemuk - Rumus: Mₙ = M₀ (1 + i)^n- M₀ (Modal Awal) = Rp10.000.000,00- i (Bunga per Tahun) = 18% = 0,18- n (Waktu) = 2 tahun- Mₙ = 10.000.000 (1 + 0,18)²- Mₙ = 10.000.000 (1,18)²- Mₙ = Rp13.924.000,00- Jawaban: d. Rp13.924.000,00 4. Bunga Majemuk (Bunga Tahun Ketiga) - Rumus: Mₙ = M₀ (1 + i)^n- M₀ (Modal Awal) = Rp100.000,00- i (Bunga per Tahun) = 10% = 0,1- n (Waktu) = 3 tahun- M3 = 100.000 (1 + 0,1)³- M3 = 100.000 (1,1)³- M3 = Rp133.100,00- Bunga = M3 - M₀ = 133.100 - 100.000 = Rp33.100,00- Jawaban: c. Rp33.100,00 5. Anuitas- Rumus Anuitas: A = (P × i) / (1 - (1 + i)^(-n))- P (Pokok Pinjaman) = Rp10.000.000,00- i (Suku Bunga per bulan) = 15% / 12 = 0,0125- n (Jumlah Anuitas) = 10- A = (10.000.000 × 0,0125) / (1 - (1 + 0,0125)^(-10))- A = 125.000 / (1 - (1,0125)^(-10))- A = 125.000 / (1 - 0,8826)- A = 125.000 / 0,1174- A = Rp1.064.735,95- Jawaban: Tidak ada yang tepat . Mungkin ada kesalahan dalam pilihan atau soal.cara kedua1. Bunga Tunggal- Rumus: Bunga = Pokok x Suku Bunga x Waktu- Bunga = Rp100.000 x 3/100 x 4 = Rp12.000- Total = Pokok + Bunga = Rp100.000 + Rp12.000 = Rp112.000- Jawaban: b. Rp112.000,00 2. Bunga Majemuk- Rumus: Total = Pokok x (1 + Suku Bunga)^Waktu- Rp146.410 = Rp100.000 x (1 + 10/100)^Waktu- 1,4641 = (1,1)^Waktu- (1,1)⁴ = 1,4641- Waktu = 4 tahun- Jawaban: c. 4 3. Bunga Majemuk- Rumus: Total = Pokok x (1 + Suku Bunga)^Waktu- Total = Rp10.000.000 x (1 + 18/100)²- Total = Rp10.000.000 x (1,18)²- Total = Rp10.000.000 x 1,3924 = Rp13.924.000- Jawaban: d. Rp13.924.000,00 4. Bunga Majemuk (Bunga Tahun Ketiga)- Rumus: Total = Pokok x (1 + Suku Bunga)^Waktu- Total setelah 3 tahun = Rp100.000 x (1 + 10/100)³- Total setelah 3 tahun = Rp100.000 x (1,1)³- Total setelah 3 tahun = Rp100.000 x 1,331 = Rp133.100- Bunga = Total - Pokok = Rp133.100 - Rp100.000 = Rp33.100- Jawaban: c. Rp33.100,00 5. Anuitas- Rumus: Anuitas = (Pokok Pinjaman x Suku Bunga) / (1 - (1 + Suku Bunga)^-n)- Suku Bunga per bulan = 15%/12 = 0,0125- Anuitas = (Rp10.000.000 x 0,0125) / (1 - (1 + 0,0125)^-10)- Anuitas = Rp125.000 / (1 - (1,0125)^-10)- Anuitas = Rp125.000 / (1 - 0,8826)- Anuitas = Rp125.000 / 0,1174 = Rp1.064.735,95- Jawaban: Tidak ada yang tepat. Mungkin ada kesalahan dalam pilihan atau soal.