To find the coordinates of the point ( x , y ) on the terminal ray of angle θ , we can use the definitions and relations of trigonometric functions.
Given:
csc θ = 12 13
sec θ = − 5 13
cot θ = − 12 5
Let's analyze each function:
Cosecant : csc θ = s i n θ 1
If csc θ = 12 13 , then sin θ = 13 12 .
Secant : sec θ = c o s θ 1
If sec θ = − 5 13 , then cos θ = − 13 5 .
Cotangent : cot θ = t a n θ 1
If cot θ = − 12 5 , then tan θ = − 5 12 .
Now, we need to determine the point ( x , y ) on the terminal side. The basic trigonometric identity for angle θ with hypotenuse r is:
x = r cos θ
y = r sin θ
Since sin θ = 13 12 and cos θ = − 13 5 , it indicates:
y = 12
x = − 5
Thus, the coordinates of point ( x , y ) are ( − 5 , 12 ) .
Therefore, the chosen multiple-choice option is ( − 5 , 12 ) .
The coordinates of the point (x, y) on the terminal ray of angle θ are (-5, 12). This result is derived from the values of the trigonometric functions provided. Therefore, the correct option is A: (-5, 12).
;