VincenTragosta - Tanya, Jawab, dan Belajar Tanpa Batas Logo

In Mathematics / College | 2025-07-08

What is $4 \log _{\frac{1}{2}} w+\left(2 \log _{\frac{1}{2}} u-3 \log _{\frac{1}{2}} v\right)$ written as a single logarithm?

A. $\log _{\frac{1}{2}} w^4 u^2-v^3$
B. $\log _{\frac{1}{2}} w^4\left(\frac{u^2}{v^3}\right)$
C. $\log _{\frac{1}{2}}\left(\frac{w^4}{u^2 v^3}\right)$
D. $\log _{\frac{1}{2}}\left(w\left(\frac{u^2}{v^3}\right)\right)^4$

Asked by BigPapiRico

Answer (1)

Use the power rule to rewrite the terms: 4 lo g 2 1 ​ ​ w = lo g 2 1 ​ ​ w 4 , 2 lo g 2 1 ​ ​ u = lo g 2 1 ​ ​ u 2 , 3 lo g 2 1 ​ ​ v = lo g 2 1 ​ ​ v 3 .
Use the quotient rule to combine the terms inside the parentheses: lo g 2 1 ​ ​ u 2 − lo g 2 1 ​ ​ v 3 = lo g 2 1 ​ ​ v 3 u 2 ​ .
Use the product rule to combine the remaining terms: lo g 2 1 ​ ​ w 4 + lo g 2 1 ​ ​ v 3 u 2 ​ = lo g 2 1 ​ ​ ( w 4 ⋅ v 3 u 2 ​ ) .
Simplify the expression: lo g 2 1 ​ ​ ( v 3 w 4 u 2 ​ ) . The final answer is lo g 2 1 ​ ​ ( v 3 w 4 u 2 ​ ) ​ .

Explanation

Understanding the Problem We are given the expression 4 lo g 2 1 ​ ​ w + ( 2 lo g 2 1 ​ ​ u − 3 lo g 2 1 ​ ​ v ) and we want to write it as a single logarithm. We will use the properties of logarithms to achieve this.

Applying the Power Rule First, we use the power rule of logarithms, which states that a lo g b ​ x = lo g b ​ x a . Applying this rule to each term, we get:


4 lo g 2 1 ​ ​ w = lo g 2 1 ​ ​ w 4
2 lo g 2 1 ​ ​ u = lo g 2 1 ​ ​ u 2
3 lo g 2 1 ​ ​ v = lo g 2 1 ​ ​ v 3

Substituting Back Now we substitute these back into the original expression:

lo g 2 1 ​ ​ w 4 + ( lo g 2 1 ​ ​ u 2 − lo g 2 1 ​ ​ v 3 )

Applying the Quotient Rule Next, we use the quotient rule of logarithms, which states that lo g b ​ x − lo g b ​ y = lo g b ​ y x ​ . Applying this to the terms inside the parentheses, we have:

lo g 2 1 ​ ​ u 2 − lo g 2 1 ​ ​ v 3 = lo g 2 1 ​ ​ v 3 u 2 ​

Substituting Again Substituting this back into the expression, we get:

lo g 2 1 ​ ​ w 4 + lo g 2 1 ​ ​ v 3 u 2 ​

Applying the Product Rule Finally, we use the product rule of logarithms, which states that lo g b ​ x + lo g b ​ y = lo g b ​ ( x y ) . Applying this to the remaining terms, we have:

lo g 2 1 ​ ​ w 4 + lo g 2 1 ​ ​ v 3 u 2 ​ = lo g 2 1 ​ ​ ( w 4 ⋅ v 3 u 2 ​ ) = lo g 2 1 ​ ​ ( v 3 w 4 u 2 ​ )

Final Answer Therefore, the expression 4 lo g 2 1 ​ ​ w + ( 2 lo g 2 1 ​ ​ u − 3 lo g 2 1 ​ ​ v ) written as a single logarithm is lo g 2 1 ​ ​ ( v 3 w 4 u 2 ​ ) .

Examples
Logarithms are used extensively in various fields, such as calculating the magnitude of earthquakes on the Richter scale, determining the pH of a solution in chemistry, and modeling population growth in biology. In finance, logarithms can help analyze investment growth rates and calculate the time it takes for an investment to double at a certain interest rate. Understanding how to combine logarithmic expressions is crucial for simplifying complex calculations and making informed decisions in these areas.

Answered by GinnyAnswer | 2025-07-08